The effect of temperature and pyrolysis time of plastic waste in producing methane

Authors

  • Holisha Widiyanto Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia
  • Boima Situmeang Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia
  • Dina Alva Prastiwi Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia
  • Ninik Triayu Susparini Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia
  • Isna Laitusholihah Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia

DOI:

https://doi.org/10.24114/jpkim.v14i3.38984

Abstract

Plastic waste is a major environmental problem due to its widespread presence and lack of economic value. Pyrolysis is a process that can decompose plastic waste and produce methane gas, liquid, and solid products. This study aimed to investigate the factors that affect methane gas production and the amount of methane gas produced during the pyrolysis of various plastics, including a black plastic bag and plastic with aluminium foil. The results showed that the aluminium foil plastic produced more methane gas than the black bag, with optimal gas content at 7.74% for the aluminium foil plastic and 3.48% for the black bag. The type of plastic, time, and temperature all significantly affected the yield of methane gas produced. In addition, the interaction between variables in plastic type, time and temperature greatly affects the yield of methane gas (CH4) obtained, because the type of plastic F count (2904) is higher than F table 0.05 (4.00), at temperature F count (5449) is greater than F table 0.05 (2.76), when F count (746) is greater than F table 0.05 (2.76). In conclusion, the snack foil produced more methane gas than the black bag because it was made of low-density polyethylene and contained aluminium ions that catalysed the decomposition of the material, resulting in an increase in the amount of methane gas produced.Keywords: Methane gas; Pyrolysis; Plastic; Waste

Author Biographies

Holisha Widiyanto, Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia

Department of Chemistry

Boima Situmeang, Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia

Department of Chemistry

Dina Alva Prastiwi, Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia

Department of Chemistry

Ninik Triayu Susparini, Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia

Department of Chemistry

Isna Laitusholihah, Sekolah Tinggi Analis Kimia Cilegon, Cilegon 42411, Indonesia

Department of Chemistry

References

Bokov, D., Jalil, A.T., Chupradit, S., Suksatan, W., Ansari, M.J., Shewael, I.H., Valiev, G.H., & Kianfar, E. (2021). Nanomaterial by sol-gel method: synthesis and application. Advances in Materials Science and Engineering, 2021, 5102014. https://doi.org/10.1155/2021/5102014

Fuchs, A., Lyautey, E., Montuelle, B., & Casper, P. (2016). Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes. Journal of Geophysical Research: Biogeosciences, 121(5), 1394“1406. https://doi.org/10.1002/2016jg003328

Harefa, N., Gulo, A., & Silaban, S. (2021). Analysis of BOD and COD levels for home industry wastewater: A case study in a sewage streams. Jurnal Pendidikan Kimia, 13(1), 38-47. https://doi.org/10.24114/jpkim.v13i1.24142

Juliastuti, R. (2013). Pembuatan stirena dari limbah plastik dengan metode pirolisis. Jurnal Teknik Pomits, 2(1), 1-3.

Kholidah, N., Faizal, M., & Said, M. (2018). Polystyrene plastic waste conversion into liquid fuel with catalytic cracking process using Al2O3 as catalyst. Science and Technology Indonesia, 3(1), 1-6. https://doi.org/10.26554/sti.2018.3.1.1-6

Kida, M., Ziembowicz, S., & Koszelnik, P. (2022). CH4 and CO2 Emissions from the decomposition of microplastics in the bottom sediment”preliminary studies. Environments, 9(7), 91. https://doi.org/10.3390/environments9070091

Nasrun, N., Kurniawan, E., & Sari, I. (2017). Pengolahan limbah kantong plastik jenis kresek menjadi bahan bakar menggunakan proses pirolisis. Jurnal Energi Elektrik, 4(1), 1-5. https://doi.org/10.29103/jee.v4i1.11

Naufan, F. (2016). Desain alat pirolisis untuk mengonversi limbah plastik hdpe menjadi bahan bakar. Fakultas Teknologi Pertanian Institut Pertanian Bogor Bogor, p.1-39. http://repository.ipb.ac.id/handle/123456789/84027

Praputri, E., Mulyazmi, M., Sari, E., & Martynis, M. (2016).

Pengolahan limbah plastik polypropylene sebagai bahan bakar minyak (BBM) dengan proses pyrolysis. Seminar Nasional Teknik Kimia “ Teknologi Oleo Petro Kimia Indonesia, p. 159-168. http://repository.unri.ac.id/xmlui/handle/123456789/8862

Rachmawati, Q., & Herumurti, W. (2015). Pengolahan sampah secara pirolisis dengan variasi rasio komposisi sampah dan jenis plastik. Jurnal Teknik ITS, 4(1), D27-D29-D29.

Royer S-J, Ferrón S, Wilson ST, Karl DM (2018) Production of methane and ethylene from plastic in the environment. PLoS ONE 13(8): e0200574. https://doi.org/10.1371/journal.pone.0200574

Salwan, F.L., Martono, D.H., Wahyono, S., Wisoyodharma, L.A. (2015). Sistem pengelolaan limbah plastik indonesia. Jurnal Teknologi Lingkungan, 6(1), 311-318. https://doi.org/10.29122/jtl.v6i1.330

Thorat, P. V., Warulkar, S., & Sathone, H. (2013). Thermofurl”œPyrolysis of waste plastic to produce liquid hydrocarbons. Advances in Polymer Science and Technology, 3(1), 14-18.

Wardhana, P.BW., & Saptoadi, H. (2016). Konversi limbah plastik polietilen menjadi bahan bakar dengan metode pirolisis. Jurnal DISPROTEK,7(1), 1-4. https://doi.org/10.34001/jdpt.v7i1.354

Downloads

Published

2022-12-24

Issue

Section

Articles