PERILAKU SOLUSI SISTEM PERSAMAAN LOTKA-VOLTERRA DENGAN WAKTU TUNDA
DOI:
https://doi.org/10.24114/jmk.v3i1.8828Abstract
ABSTRAK Penelitian ini membahas perilaku sistem persamaan Lotka-Volterra dengan waktu tunda. Pembahasan dilakukan terhadap hasil simulasi Matlab dengan menggunakan metode Forward Euler. Dari hasil pengamatan yang telah dilakukan pada simulasi untuk beberapa nilai parameter dapat dilihat adanya hubungan antara waktu tunda dengan perilaku solusi sistem. Adanya pengaruh waktu tunda pada sistem Lotka-Volterra akan menghilangkan sifat periodik solusi. Pengaruh waktu tunda mengakibatkan siklus populasi semakin mengembang, namun kedua populasi tidak akan mengalami kepunahan. Kemudian panjang interval tunda berpengaruh terhadap laju perkembangan siklus populasi. Makin panjang interval tunda makin cepat laju perkembangan siklus populasi. Kata kunci: Lotka-Volterra, waktu tunda, keseimbangan, kestabilan. ABSTRACT This study discusses the behavior of Lotka-Volterra equations system with time delay. The discussion conducted on Matlab simulation results using Forward Euler. From the observations that have been made on the simulation for some parameter values can be seen the relationship between the time delay with the behavior of the system solution. Their influence on the delay time Lotka-Volterra system will eliminate the periodic nature of the solution. The influence of the time delay resulted in increasingly expanding population cycle, but the two populations will become extinct. Then the long delay intervals affect the rate of development of population cycle. The longer the delay interval faster the rate of population growth cycle. Keywords: Lotka-Volterra, time delay,equilibrium, stabilityDownloads
Published
2017-04-06
Issue
Section
Articles
License
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).