Optimizing Tourism Development Through Landslide Hazard Mapping in Raung Volcano
DOI:
https://doi.org/10.24114/jg.v16i1.50118Abstract
The series of volcanic activities of Mount Raung triggered primary and secondary hazards in the area around the volcano. Kalibaru watershed is one of the areas prone to landslides due to secondary hazards of eruption activity in the direction of west and northwest part of this region. This study aims to optimize tourism by mapping landslide hazard using Spatial Multi-Criteria Evaluation (SMCE) around Mount Raung. This research used 46 points of landslide data through remote sensing, field observation. Ten landslide triggering factors, namely TPI (Topographic Position Index), TWI (Topographic Wetness Index), SPI (Stream Power Index), slope, distance to river, rainfall, geology, land use, distance to road, and soil type was used to map the landslide hazard. This study used ROC (Receiver Operating Characteristic) analysis to validate the landslide susceptibility mapping with an AUC (Area Under Curve) value of 0.93, which indicates that the mapping has a high accuracy value. The results showed that the landslide susceptibility is divided into three classes: high susceptible, moderate susceptible, and low susceptible. The high susceptible area covers 151.62 km2 (21%), the moderate susceptible area covers 407.99 km2 (56%), and the low susceptible area covers 166.79 km2 (23%). Based on the results of the mapping, tourism development in the area of Mount Raung is recommended in areas that are classified as medium and low landslide susceptibility.Keywords: Mount Raung, Landslides, SMCE, Tourism DevelopmentReferences
Ady, A., Nurrahmah, N., Sari, E. K., & Rif™an, A. A. (2019). Strategi Pengembangan Kawasan Wisata Tanjung Lesung Sebagai Destinasi Prioritas yang Rawan Bencana. Altasia Jurnal Pariwisata Indonesia, 2(1). https://doi.org/10.37253/altasia.v2i1.540
AM, M. L. (2022). Sistem dan Evolusi Magma Gunung Api Raung, Kabupaten Jember, Bondowoso, dan Banyuwangi, Jawa Timur. Universitas Gadjah Mada.
Apriyeni, B. A. R., Mubarokah, N., & Ramli, M. (2022). Topographic Position Indeks Analisys untuk Interpretasi Landform Pulau Lombok Berdasarkan Digital Elevation Model (DEM). Geodika: Jurnal Kajian Ilmu Dan Pendidikan Geografi, 6(2), 264“273. https://doi.org/10.29408/geodika.v6i2.7031
Araujo, D. De. (2019). Zonasi Area Karst Desa Betikharjo , Kecamatan Semanding , Kabupaten. PROSIDING, Seminar Teknologi Kebumian Dan Kelautan I.
Arsyad, U., Barkey, R. A., Wahyuni, W., & Matandung, K. K. (2018). Characteristics of Landslides in the Tangka River Basin. Jurnal Hutan Dan Masyarakat, 10(1), 203“214. https://doi.org/10.24259/jhm.v0i0.3978
Azizah, V., Listyo, D., & Irawan, Y. (2023). Deteksi Perubahan Jalur Lahar di Curah Lengkong Pasca Erupsi Gunungapi Semeru 2021 Menggunakan Google Earth Engine. 7(1), 70“93. https://doi.org/10.22236/jgel.v7i1.10321
Baboli Moakher, H., Taghian, A., & Shirani, K. (2018). Application of Morphometric Indices in Optimization of Landslide Susceptibility Zonation Using Probabilistic Methods. Physical Geography Research Quarterly, 50(4), 747“773.
Bachri, S., & Shresta, R. P. (2010). Landslide hazard assessment using analytic hierarchy processing (AHP) and geographic information system in Kaligesing mountain area of Central Java Province Indonesia.
Bachri, S., Sumarmi, Yudha Irawan, L., Utaya, S., Dwitri Nurdiansyah, F., Erfika Nurjanah, A., Wahyu Ning Tyas, L., Amri Adillah, A., & Setia Purnama, D. (2019). Landslide Susceptibility Mapping (LSM) in Kelud Volcano Using Spatial Multi-Criteria Evaluation. IOP Conference Series: Earth and Environmental Science, 273(1). https://doi.org/10.1088/1755-1315/273/1/012014
Dewi, I. K., Fauzi, R., & Syahbandar, M. Y. (2022). Threat of landslides hazard at the core zone of Cultural Conservation Strategic Area of Gunung Padang megalithic site, in Cianjur District. Indonesian Journal of Applied Environmental Studies, 3(2), 105“110. https://doi.org/10.33751/injast.v3i2.5622. https://doi.org/10.33751/injast.v3i2.5622
Dibyosaputro, S. (1997). Geomorfologi Dasar (Handout). Fakultas Geografi. Universitas Gajah Mada. Yogyakarta.
Febriyanti, R. F., & Anjasmara, I. M. (2017). Analisis Deformasi Gunung Raung Menggunakan Teknologi Differential Interferometry Synthetic Aperture Radar (DInSAR). Jurnal Teknik ITS, 6(2). https://doi.org/10.12962/j23373539.v6i2.25018
Gudiyangada, T., Kienberger, S., Meena, S., Hölbling, D., & Blaschke, T. (2020). Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomatics, Natural Hazards and Risk, 11, 572“600. https://doi.org/10.1080/19475705.2020.1736190
Guo, X., Fu, B., Du, J., Shi, P., Chen, Q., & Zhang, W. (2021). Applicability of susceptibility model for rock and loess earthquake landslides in the eastern tibetan plateau. Remote Sensing, 13(13), 1“19. https://doi.org/10.3390/rs13132546
Hemasinghe, H., Rangali, R. S. S., Deshapriya, N. L., & Samarakoon, L. (2018). Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka). Procedia Engineering, 212, 1046“1053. https://doi.org/10.1016/j.proeng.2018.01.135
Irawan, L. Y. (2020). Identifikasi Bahaya Longsor Lahan di Sebagian Wilayah Poncokusumo dan Wajak Kabupaten Malang. Geodika: Jurnal Kajian Ilmu Dan Pendidikan Geografi, 4(2), 160“171. https://doi.org/10.29408/geodika.v4i2.2474
Irawan, L. Y., Sumarmi, Bachri, S., Panoto, D., Nabila, Pradana, I. H., Faizal, R., Devy, M. M. R., & Prasetyo, W. E. (2021). The Use of Machine Learning for Accessing Landslide Susceptibility Class: Study Case of Kecamatan Pacet, Kabupaten Mojokerto. IOP Conference Series: Earth and Environmental Science, 884(1). https://doi.org/10.1088/1755-1315/884/1/012006
Irawan, L. Y., Sumarmi, Bachri, S., Panoto, D., Pradana, I. H., & Faizal, R. (2021). Landslides susceptibility mapping based on geospatial data and geomorphic attributes (a case study: Pacet, Mojokerto, East Java). IOP Conference Series: Earth and Environmental Science, 747(1). https://doi.org/10.1088/1755-1315/747/1/012002
Irawan, L. Y., Syafi™i, I. R., Rosyadi, I., Siswanto, Y., Munawaroh, A., Wardhani, A. K., & Saifanto, B. A. (2020). Analisis potensi rawan bencana tanah longsor di Kecamatan Jabung, Kabupaten Malang. Jurnal Pendidikan Geografi, 25(2), 102“113. https://doi.org/10.17977/um017v25i22020p102
Kassouk, Z., Thouret, J.-C., Gupta, A., Solikhin, A., & Liew, S. C. (2014). Object-oriented classification of a high-spatial resolution SPOT5 image for mapping geology and landforms of active volcanoes: Semeru case study, Indonesia. Geomorphology, 221, 18“33. https://doi.org/10.1016/j.geomorph.2014.04.022
Kocher, S. D., & John, W. L. (2006). Why is my forest the way it is: Soil erosion. Univ. of California Cooperative Extention. California.
Larasati, F., Suci Richasari, D., & Mu, A. (2021). Pemodelan Regresi Double Log dan Semi Log Untuk Nilai Tanah di Daerah Rawan Tanah Longsor (Studi Kasus: Kecamatan Songgon, Kabupaten Banyuwangi). Prosiding FIT ISI, 1, 145“152. https://proceedings.undip.ac.id/index.php/isiundip2021/article/view/633
Ling, S., Zhao, S., Huang, J., & Zhang, X. (2022). Landslide susceptibility assessment using statistical and machine learning techniques: A case study in the upper reaches of the Minjiang River, southwestern China. Frontiers in Earth Science, 10(August), 1“18. https://doi.org/10.3389/feart.2022.986172
Mahendradevi, T. I. P., Darma Putra, I. N., & Sunarta, I. N. (2022). Potensi dan Pengembangan Daya Tarik Kawasan Wisata di Daerah Rawan Bencana Gunung Agung, Kabupaten Karangasem, Bali. Jurnal Master Pariwisata (JUMPA). https://doi.org/10.24843/jumpa.2022.v09.i01.p11
Okoli, J., Nahazanan, H., Nahas, F., Kalantar, B., Shafri, H. Z. M., & Khuzaimah, Z. (2023). High-Resolution Lidar-Derived DEM for Landslide Susceptibility Assessment Using AHP and Fuzzy Logic in Serdang, Malaysia. Geosciences (Switzerland), 13(2). https://doi.org/10.3390/geosciences13020034
Oktaviani, N., Ristya, Y., Fadhil, M., & Kusratmoko, E. (2020). Landslide susceptibility mapping using Spatial Multi-Criteria Evaluation (SMCE) method in Camba Sub-district, Maros Regency, South Sulawesi. E3S Web Conf., 153. https://doi.org/10.1051/e3sconf/202015302007
Pamela, Yukni, A., Imam, S. A., & Kartiko, R. D. (2018). The selective causative factors on landslide susceptibility assessment: Case study Takengon, Aceh, Indonesia. AIP Conference Proceedings, 1987(July 2018). https://doi.org/10.1063/1.5047374
Permanajati, I., Suranda, A. H., & Zaenurrohman, J. A. (2023). Assessment of Landslide Susceptibility in the Pagentan Area , Banjarnegara Regency : A Spatial Multi-Criteria Evaluation Approach. 33(1), 17“35. https://doi.org/10.55981/risetgeotam.2023.1229
Pourghasemi, H. R., Kariminejad, N., Gayen, A., & Komac, M. (2020). Statistical functions used for spatial modelling due to assessment of landslide distribution and landscape-interaction factors in Iran. Geoscience Frontiers, 11(4), 1257“1269. https://doi.org/10.1016/j.gsf.2019.11.005
Pradhan, A. M. S., Kang, H.-S., Lee, J.-S., & Kim, Y.-T. (2019). An ensemble landslide hazard model incorporating rainfall threshold for Mt. Umyeon, South Korea. Bulletin of Engineering Geology and the Environment, 78(1), 131“146. https://doi.org/10.1007/s10064-017-1055-y
Prasindya, P., Hariyanto, T., & Kurniawan, A. (2020). Analisis Potensi Tanah Longsor Menggunakan Sistem Informasi Geografis dan Analytical Hierarchy Process (AHP) (Studi Kasus: Kecamatan Songgon, Kabupaten Banyuwangi). Geoid, 16(1), 19. https://doi.org/10.12962/j24423998.v16i1.7973
Priyono. (2015). Hubungan klasifikasi longsor, klasifikasi tanah rawan longsor dan klasifikasi tanah pertanian rawan longsor. Gema, 27(49), 1602“1617.
Rini, Y. M. (2020). Digital Digital Repository Repository Universitas Universitas Jember Jember Digital Digital Repository Repository Universitas Universitas Jember Jember.
Sabila, F. S. N., & Abdurrachman, M. (2020). The Mechanism of Structural Geology Formation at Raung Volcano, East Java. Jurnal Teknologi Sumberdaya Mineral, 1(1), 1“10. https://doi.org/10.19184/jeneral.v1i1.21558
Singh, P., Sharma, A., Sur, U., & Rai, P. K. (2021). Comparative landslide susceptibility assessment using statistical information value and index of entropy model in Bhanupali-Beri region, Himachal Pradesh, India. Environment, Development and Sustainability, 23(4), 5233“5250. https://doi.org/10.1007/s10668-020-00811-0
Wang, Q., Guo, Y., Li, W., He, J., & Wu, Z. (2019). Predictive modeling of landslide hazards in Wen County, northwestern China based on information value, weights-of-evidence, and certainty factor. Geomatics, Natural Hazards and Risk, 10(1), 820“835. https://doi.org/10.1080/19475705.2018.1549111
Wida, W. A., Maas, A., & Sartohadi, J. (2019). Pedogenesis of Mt. Sumbing Volcanic Ash above The Alteration Clay Layer in The Formation of Landslide Susceptible Soils in Bompon Sub-Watershed. Ilmu Pertanian (Agricultural Science), 4(1), 15. https://doi.org/10.22146/ipas.41893
Zhao, Z., Xu, Z., Hu, C., Wang, K., & Ding, X. (2024). Geographically weighted neural network considering spatial heterogeneity for landslide susceptibility mapping: A case study of Yichang City, China. Catena, 234(June 2023), 107590. https://doi.org/10.1016/j.catena.2023.107590
Zulkarnain, M. W. D. (2012). Evaluasi Multi-Kriteria Keruangan untuk Penilaian Risiko Total Tsunami di Pacitan. Universitas Gadjah Mada.