Modeling of Land Cover Changes in Banjarbaru City South Kalimantan Province
DOI:
https://doi.org/10.24114/jg.v16i1.48121Abstract
Urban areas often experience land cover changes. Banjarbaru is one of several cities in Indonesia that has experienced land changes. The relocation of the administrative center of Banjarmasin City to Banjarbaru City led to the development of settlements. One spatial analysis carried out to examine the phenomenon of land change is remote sensing techniques. The method that can be used is the Land Change Modeler from MOLUSCE in QGIS. This model uses the CAM (Cellular Automata Markov) method to identify land cover change and predict land cover distribution. CAM can understand and predict land change patterns by considering land use, vegetation, and cell spatial interactions. This modeling is based on land cover data for 2015 and 2020 and several supporting parameters such as DEM data and distance to roads. Based on the modeling results from 2015 and 2020, Banjarbaru City experienced a change in built-up land, with most of it occurring in the center of Banjarbaru City. Based on the Markov Chain method by looking at land changes in the previous year, the development of built-up land increased by about 8% of the Banjarbaru City area of 32917.41 hectares. Based on the prediction results, the development of built-up land is centered in the middle of Banjarbaru City, such as North and South Banjarbaru Districts, due to the development of residential development.Keywords: Land Cover, Land Change Modeller, Cellular Automata, Markov ChainReferences
Al-Najjar, H. A. H., Kalantar, B., Pradhan, B., & Saeidi, V. (2019). Conditioning factor determination for mapping and prediction of landslide susceptibility using machine learning algorithms. In K. Schulz, K. G. Nikolakopoulos, & U. Michel (Eds.), Earth Resources and Environmental Remote Sensing/GIS Applications X (p. 19). SPIE. https://doi.org/10.1117/12.2532687
Arisanty, D., Adyatma, S., Muhaimin, M., & Nursaputra, A. (2019). Landsat 8 OLI TIRS Imagery Ability for Monitoring Post Forest Fire Changes. Pertanika Journal of Science & Technology, 27(3).
Arisanty, D., Anis, M. Z. A., Putro, H. P. N., Hastuti, K. P., & Angriani, P. (2021). Social Vulnerability of Land Fires in Banjarbaru. https://doi.org/10.2991/assehr.k.210222.042
Aryaguna, P. A., & Saputra, A. N. (2020a). Land change modeler for predicting land cover change in Banjarmasin City, South Borneo (2014 - 2022). IOP Conference Series: Earth and Environmental Science, 500, 012002. https://doi.org/10.1088/1755-1315/500/1/012002
Aryaguna, P. A., & Saputra, A. N. (2020b). Land change modeler for predicting land cover change in Banjarmasin City, South Borneo (2014 - 2022). IOP Conference Series: Earth and Environmental Science, 500(1). https://doi.org/10.1088/1755-1315/500/1/012002
Cervero, R. (2013). Linking urban transport and land use in developing countries. Journal of Transport and Land Use, 6(1), 7“24. https://doi.org/10.5198/jtlu.v1.425
Erlina, & Suherty, L. (2019). Pengaruh Jumlah Penduduk, Penduduk Miskin dan Pengangguran Terbuka Terhadap Pertumbuhan Ekonomi di Kota Banjarbaru. JIEP: Jurnal Ilmu Ekonomi Dan Pembangunan, 2(4), 852. https://doi.org/10.20527/jiep.v2i4.1219
Estoque, R. C., & Murayama, Y. (2015). Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat-8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecological Indicators, 56, 205“217. https://doi.org/10.1016/j.ecolind.2015.03.037
Febrianti, N. K. O., Danoedoro, P., & Widayani, P. (2023). Land-Cover Change Detection in Batur Catchment Area Using Remote Sensing. JURNAL GEOGRAFI, 15(1), 64. https://doi.org/10.24114/jg.v15i1.32670
Hermon, D. (2012). Dinamika Cadangan Karbon akibat Perubahan Tutupan Lahan menjadi Lahan Permukiman di Kota Padang Sumatera Barat. Forum Geografi, 26(1), 45. https://doi.org/10.23917/forgeo.v26i1.5049
Indarto, I., Mandala, M., Febrian Arifin, F., & Lukman Hakim, F. (2020). Aplikasi Citra Sentinel-2 untuk Pemetaan Tutupan dan Peruntukan Lahan pada Tingkat Desa. JURNAL GEOGRAFI, 12(02), 189. https://doi.org/10.24114/jg.v12i02.16970
Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177, 89“100. https://doi.org/10.1016/j.rse.2016.02.028
Kosasih, D., Buce Saleh, M., & Budi Prasetyo, L. (2019). Visual and Digital Interpretations for Land Cover Classification in Kuningan District, West Java. Jurnal Ilmu Pertanian Indonesia, 24(2), 101“108. https://doi.org/10.18343/jipi.24.2.101
Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of Land-Use and Land-Cover Change in Tropical Regions. Annual Review of Environment and Resources, 28(1), 205“241. https://doi.org/10.1146/annurev.energy.28.050302.105459
Leta, M. K., Demissie, T. A., & Tränckner, J. (2021). Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability, 13(7), 3740. https://doi.org/10.3390/su13073740
Liu, Z., Yang, Y., Ji, S., Dong, D., Li, Y., Wang, M., Han, L., & Chen, X. (2021). Effects of Elevation and Distance from Highway on the Abundance and Community Structure of Bacteria in Soil along Qinghai-Tibet Highway. International Journal of Environmental Research and Public Health, 18(24), 13137. https://doi.org/10.3390/ijerph182413137
López-Serrano, P., Corral-Rivas, J., DÃaz-Varela, R., Ãlvarez-González, J., & López-Sánchez, C. (2016). Evaluation of Radiometric and Atmospheric Correction Algorithms for Aboveground Forest Biomass Estimation Using Landsat 5 TM Data. Remote Sensing, 8(5), 369. https://doi.org/10.3390/rs8050369
Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., McAlpine, C., Carleton, A. M., Hale, R., Gameda, S., Beltrán-Przekurat, A., Baker, B., McNider, R., Legates, D. R., Shepherd, M., Du, J., Blanken, P. D., Frauenfeld, O. W., Nair, U. S., & Fall, S. (2014). Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 34(4), 929“953. https://doi.org/10.1002/joc.3736
Maryati, S., Humaira, A. N. S., Afriana, A., Roekmi, R. A. K., & Suhartini, N. (2021). Developer behavior in local infrastructure provision in Indonesia: Implications for policy. Utilities Policy, 70, 101183. https://doi.org/10.1016/j.jup.2021.101183
Muhaimin, M., & Ramali, A. (2021). Development of Leading Sectors and Competitiveness of Animal Husbandry Commodities in Banjarbaru City 2010-2016. https://doi.org/10.2991/assehr.k.210222.066
Muhammad, R., Zhang, W., Abbas, Z., Guo, F., & Gwiazdzinski, L. (2022). Spatiotemporal Change Analysis and Prediction of Future Land Use and Land Cover Changes Using QGIS MOLUSCE Plugin and Remote Sensing Big Data: A Case Study of Linyi, China. Land, 11(3), 419. https://doi.org/10.3390/land11030419
Nurhanifah, N. (2021). Description and Mapping of Urbanization Development in Sumatera Utara. JURNAL GEOGRAFI, 13(2), 251. https://doi.org/10.24114/jg.v13i2.23206
Patarasuk, R., & Binford, M. W. (2012). Longitudinal analysis of the road network development and land-cover change in Lop Buri province, Thailand, 1989“2006. Applied Geography, 32(2), 228“239. https://doi.org/10.1016/j.apgeog.2011.05.009
Pons, X., Pesquer, L., Cristóbal, J., & González-Guerrero, O. (2014). Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images. International Journal of Applied Earth Observation and Geoinformation, 33, 243“254. https://doi.org/10.1016/j.jag.2014.06.002
Puertas, O. L., HenrÃquez, C., & Meza, F. J. (2014). Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010“2045. Land Use Policy, 38, 415“425. https://doi.org/10.1016/j.landusepol.2013.11.024
Putri, L. M., & Wicaksono, P. (2021). Mapping of Land Use Changes in The Core Zone of Parangtritis Sand Dunes Using OBIA Method 2015-2020. JURNAL GEOGRAFI, 13(1), 109. https://doi.org/10.24114/jg.v13i1.21465
Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and Modeling of Spatiotemporal Urban Expansion and Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. ISPRS International Journal of Geo-Information, 6(9), 288. https://doi.org/10.3390/ijgi6090288
Sadali, M. I. (2018). Ketahanan Pangan Berkelanjutan di Kabupaten Sukoharjo. JURNAL GEOGRAFI, 10(1), 86. https://doi.org/10.24114/jg.v10i1.8493
Sajan, B., Mishra, V. N., Kanga, S., Meraj, G., Singh, S. K., & Kumar, P. (2022). Cellular Automata-Based Artificial Neural Network Model for Assessing Past, Present, and Future Land Use/Land Cover Dynamics. Agronomy, 12(11), 2772. https://doi.org/10.3390/agronomy12112772
Supriatna, S., Hashilah, F., Mukhtar, M. K., & Wardani, K. K. (2022). Determinant of Land Use Change in South Kalimantan: An Evidence from Banjarbaru City and Banjar Regency. Forest and Society, 6(1), 422“435. https://doi.org/10.24259/fs.v6i1.18469
Wu, K., Ye, X., Qi, Z., & Zhang, H. (2013). Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: The case of fast-growing Hangzhou metropolitan area, China. Cities, 31, 276“284. https://doi.org/10.1016/j.cities.2012.08.003