Detection Of The Thermal Front Using The Cayula-Cornillon Alghorithm: A Case Study Of The State Fisheries Management Area 713, Indonesia
DOI:
https://doi.org/10.24114/jg.v16i2.42555Abstract
Thermal fronts are pivotal in shaping the marine ecosystem, influencing the presence and distribution of marine species. This study delves into the fluctuating patterns of thermal fronts in Indonesian waters, specifically focusing on the State Fisheries Management Area of the Republic of Indonesia, known as WPPNRI, 713. We identified the distribution and frequency of thermal fronts across different monsoon seasons. Utilizing the extended Cayula Cornillon Algorithm “ Single Image Edge Detection (CCA-SIED), we deploy a precise methodology for detecting these fronts, relying on sea surface temperature (SST) gradients to identify specific periods and regions. Our analysis encompasses extensive satellite data collected from Moderate Resolution Imaging Spectroradiometer (MODIS) level 3. Our findings unveil distinct seasonal variations, with a decrease in thermal fronts during the west monsoon and a surge during the east monsoon. Moreover, we identify regional disparities, with denser thermal fronts observed in the southern and middle regions compared to the northern areas. Furthermore, our study underscores the critical need to integrate oceanographic data with fisheries management strategies to address the impacts of climate variability on marine resources. The observed relationships between thermal fronts, nutrient distribution, and fish migration emphasize the necessity for ongoing, localized monitoring to develop adaptive management solutions. This research marks a significant step in characterizing thermal fronts in WPPNRI 713, laying the groundwork for future investigations into other ecologically significant fronts, including those related to chlorophyll, salinity, and nutrients, thereby enhancing our understanding of marine ecosystem dynamics.Keywords: Cayula Cornillon; Fishing Zone; Marine Ecosystem; Sea Surface Temperature; Thermal FrontsReferences
Ababouch, L., & Carolu, C. (2015). Fisheries and Aquaculture in the Context of Blue Economy. Feeding Africa, 2(21-23 October), 1“13. http://www.afdb.org/fileadmin/uploads/afdb/Documents/Events/DakAgri2015/Fisheries_and_Aquaculture_in_the_Context_of_Blue_Economy.pdf
Ardianto, R., Setiawan, A., Hidayat, J. J., & Zaky, A. R. (2017). Development of an automated processing system for potential fishing zone forecast. IOP Conf. Series: Earth and Environmental Science, 54, 012081. https://doi.org/10.1088/1742-6596/755/1/011001
Belkin, I. M. (2021). Remote Sensing of Ocean Fronts in Marine Ecology and Fisheries. Remote Sensing, 13, 883. https://doi.org/https://doi.org/ 10.3390/rs13050883
Belkin, I. M., & O™Reilly, J. E. (2009). An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. Journal of Marine Systems, 78(3), 319“326. https://doi.org/10.1016/j.jmarsys.2008.11.018
Cayula, J.-F., & Cornillon, P. (1992). Edge Detection Algorithm for SST Images. Journal of Atmosferic and Oceanic Technology, 9(1), 67“80. https://doi.org/https://doi.org/10.1175/1520-0426(1992)009<0067:EDAFSI>2.0.CO;2
Cooke, S. J., Fulton, E. A., Sauer, W. H. H., Lynch, A. J., Link, J. S., Koning, A. A., Jena, J., Silva, L. G. M., King, A. J., Kelly, R., Osborne, M., Nakamura, J., Preece, A. L., Hagiwara, A., Forsberg, K., Kellner, J. B., Coscia, I., Helyar, S., Barange, M., ¦ Gillanders, B. M. (2023). Towards vibrant fish populations and sustainable fisheries that benefit all: learning from the last 30 years to inform the next 30 years. In Reviews in Fish Biology and Fisheries (Vol. 33, Issue 2). Springer International Publishing. https://doi.org/10.1007/s11160-023-09765-8
Damanik, M. R. S., & , M. Riza Kurnia Lubis, A. J. D. A. (2016). Kajian Pendekatan Ekosistem Dalam Pengelolaan Perikanan Di Wilayah Pengelolaan Perikanan (WPP) 571 Selat Malaka Provinsi Sumatera Utara. Jurnal Geografi, 8(2), 165“176. https://doi.org/https://doi.org/10.24114/jg.v8i2.5780
Fitrianah, D., Fahmi, H., Hidayanto, A. N., & Arymurthy, A. M. (2016). A Data Mining Based Approach for Determining the Potential Fishing Zones. International Journal of Information and Education Technology, 6(3), 187“191. https://doi.org/10.7763/ijiet.2016.v6.682
Franco, B. C., Defeo, O., Piola, A. R., Barreiro, M., Yang, H., Ortega, L., Gianelli, I., Castello, J. P., Vera, C., Buratti, C., Pájaro, M., Pezzi, L. P., & Möller, O. O. (2020). Climate change impacts on the atmospheric circulation, ocean, and fisheries in the southwest South Atlantic Ocean: a review. Climatic Change, 162(4), 2359“2377. https://doi.org/10.1007/s10584-020-02783-6
Garcés-RodrÃguez, Y., Sánchez-Velasco, L., Parés-Sierra, A., Jiménez-Rosenberg, S. P. A., Márquez-Artavia, A., & Flores-Morales, A. L. (2021). FISH larvae distribution and transport on the thermal fronts in the Midriff Archipelago region , Gulf of California. Continental Shelf Research Journal, 218(104384), 1“13. https://doi.org/https://doi.org/10.1016/j.csr.2021.104384
Hamzah, R., Prayogo, T., & Marpaung, S. (2016). Metode Penentuan Titik Koordinat Zona Potensi Termal Front Suhu Permukaan Laut ( Method Of Determination Points Coordinate For Potential Fishing Zone Based On Detection Of Thermal Front Sea Surface Temperature. Jurnal Penginderaan Jauh, 13(2), 97“108. https://doi.org/http://dx.doi.org/10.30536/j.pjpdcd.2016.v13.a2364
Kahru, M., Jacox, M. G., & Ohman, M. D. (2018). CCE1: Decrease in the frequency of oceanic fronts and surface chlorophyll concentration in the California Current System during the 2014“2016 northeast Pacific warm anomalies. Deep-Sea Research Part I: Oceanographic Research Papers, 140(January), 4“13. https://doi.org/10.1016/j.dsr.2018.04.007
Kurniawan, A. (2017). Flooding Model As the Analysis of the Sea Level Increase. Jurnal Geografi, 9(2), 109“116. https://doi.org/https://doi.org/10.24114/jg.v9i2.6465
Louzao, M., Navarro, J., Delgado-Huertas, A., de Sola, L. G., & Forero, M. G. (2017). Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers. Deep-Sea Research Part II: Topical Studies in Oceanography, 140(November 2016), 117“126. https://doi.org/10.1016/j.dsr2.2016.10.012
Mohanty, P. C., Mahendra, R. S., Nayak, R. K., Nimit Kumar, Srinivasa Kumar, T., & Dwivedi, R. M. (2017). Persistence of productive surface thermal fronts in the northeast Arabian Sea. Regional Studies in Marine Science, 16, 216“224. https://doi.org/10.1016/j.rsma.2017.09.010
Narcisse, E. N., Liming, S., Hongxing, C., & Shuangquan, X. (2020). Relationship Between the Spatiotemporal Distribution of Dominant Small Pelagic Fishes and Environmental Factors in Mauritanian Waters. Journal of Ocean University of China, 19(2), 393“408. https://doi.org/10.1007/s11802-020-4120-2
Nieblas, A., Demarcq, H., Drushka, K., Sloyan, B., & Bonhommeau, S. (2014). Deep-Sea Research II Front variability and surface ocean features of the presumed southern blue fi n tuna spawning grounds in the tropical southeast Indian Ocean. Deep-Sea Research Part II, 107, 64“76. https://doi.org/10.1016/j.dsr2.2013.11.007
Obenour, K. M. (2013). Temporal Trends in Global Sea Surface Temperature Fronts (Issue August) [University of Rhode Island]. https://doi.org/https://doi.org/10.23860/thesis-obenour-kelsey-2013
Poloczanska, E. S., Burrows, M. T., Brown, C. J., Molinos, J. G., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Moore, P. J., Richardson, A. J., Schoeman, D. S., & Sydeman, W. J. (2016). Responses of marine organisms to climate change across oceans. Frontiers in Marine Science, 3, 1“21. https://doi.org/10.3389/fmars.2016.00062
Puspitawati, P., & Pei Ze, I. L. (2023). Analysis of Local Wisdom of Mendale Village Fisherman Communities in the Fishing Process. Jurnal Geografi, 15(2), 145“153. https://doi.org/10.24114/jg.v15i2.45997
Puthezhath, A. S. (2014). Identification of Thermal Fronts in the Arabian Sea Using Modis-Sst Data Physical Oceanography & Ocean Modelling. [Kerala University of Fisheries and Ocean Studies]. https://doi.org/10.13140/RG.2.1.3413.7126
Reese, D. C., O™Malley, R. T., Brodeur, R. D., & Churnside, J. H. (2011). Epipelagic fish distributions in relation to thermal fronts in a coastal upwelling system using high-resolution remote-sensing techniques. ICES Journal of Marine Science, 68(9), 1865“1874. https://doi.org/10.1093/icesjms/fsr107
Republik Indonesia, M. K. dan P. (2014). Peraturan Menteri Kelautan dan Perikanan Republik Indonesia No.18/PERMEN-KP/2014 Tentang Wilayah Pengelolaan Perikanan Negara Republi Indonesia. In Peraturan Menteri. https://peraturan.bpk.go.id/Details/158314/permen-kkp-no-18permen-kp2014-tahun-2014
Roberts, J. J., Best, B. D., Dunn, D. C., Treml, E. A., & Halpin, P. N. (2010). Marine Geospatial Ecology Tools: An integrated framework for ecological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environmental Modelling and Software, 25(10), 1197“1207. https://doi.org/10.1016/j.envsoft.2010.03.029
Sholva, Y., Sitohang, B., & Wikantika, K. (2013). New Approach to Locate Upwelling and Thermal-front from Satellite Imagery Data. Procedia Technology, 11, 317“326. https://doi.org/10.1016/j.protcy.2013.12.197
Suhadha, A. G., & Asriningrum, W. (2020). Potential Fishing Zones Estimation Based on Approach of Area Matching Between Thermal Front and Mesotrophic Area. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 12(2), 565“581. https://doi.org/http://doi.org/10.29244/jitkt.v12i2.28305
Sukri, I., Harini, R., & Sudrajat. (2023). Effect of Transportation Infrastructure on Built-up Area Using Prediction of Land Use/Cover Change: Case Study of Yogyakarta International Airport, Indonesia. Indonesian Journal of Geography, 55(1), 1“9. https://doi.org/10.22146/ijg.76433
Sun, K., Chong, J., Diao, L., Li, Z., & Wei, X. (2022). On the Use of Ocean Surface Doppler Velocity for Oceanic Front Extraction from Chinese Gaofen-3 SAR Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 2709“2720. https://doi.org/10.1109/JSTARS.2022.3162445
Susilawati, S. A., Ibrahim, M. H., Isa, N. K. B. M., Musyiam, M., & Khoirunisa, N. (2024). Urban Heat Island Literacy Among Geography Education Students of Universitas Muhammadiyah Surakarta. Jurnal Geografi, 16(1), 63“75. https://doi.org/https://doi.org/10.24114/jg.v16i1.45542
Tjasyono, H. B., R, G., Woro, S., & Ina, J. (2008). The Character of Rainfall in the Indonesian Monsoon. International Symposium on Equatorial Monsoon System, 1“11. http://file.upi.edu/Direktori/SPS/Prodi.Pendidikan_IPA/Bayong_Tjasyono/Kumpulan_Makalah/The_Character_of_Rainfall.pdf
Worthington, T. A., van Soesbergen, A., Berkhuysen, A., Brink, K., Royte, J., Thieme, M., Wanningen, H., & Darwall, W. (2022). Global Swimways for the conservation of migratory freshwater fishes. Frontiers in Ecology and the Environment, 20(10), 573“580. https://doi.org/10.1002/fee.2550
Yusuf, M., Maddatuang, Malik, A., & Sukri, I. (2022a). Analisis Trend dan Variabilitas Suhu Permukaan Laut di Perairan Indonesia WPPN-RI 713. Jurnal Environmental Science, 5(1), 76“82. https://doi.org/https://doi.org/10.35580/jes.v5i1.38018
Yusuf, M., Maddatuang, Malik, A., & Sukri, I. (2022b). Deteksi Sebaran Klorofil-a Untuk Zona Tangkapan Ikan Pelagis Berdasarkan Musim di WPPN-RI 713. Seminar Nasional Hasil Penelitian LP2M-Universitas Negeri Makassar, 713, 167“176. https://ojs.unm.ac.id/semnaslemlit/article/view/39405
Zahrotunisa, S., Danoedoro, P., & Arjasakusuma, S. (2022). Comparison of Split Windows Algorithm and Planck Methods for Surface Temperature Estimation Based on Remote Sensing Data in Semarang. Jurnal Geografi, 14(1), 11. https://doi.org/10.24114/jg.v14i1.24603
Zhang, Y., Rueda, C., Kieft, B., Ryan, J. P., Wahl, C., O™Reilly, T. C., Maughan, T., & Chavez, F. P. (2019). Autonomous tracking of an oceanic thermal front by a Wave Glider. Journal of Field Robotics, 36(5), 940“954. https://doi.org/10.1002/rob.21862
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 JURNAL GEOGRAFI
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.