Identification of Fault Zone in Bali Using GGMPlus Gravity and Alos-2 Palsar-2 Data

Authors

  • I Putu Dedy Pratama Indonesian Agency for Meteorological, Climatological, and Geophysical Agency (BMKG) Masters Program in Environmental Science, Udayana University http://orcid.org/0000-0002-4540-1065
  • Takahiro Osawa Yamaguchi University International Collaboarion Office (YUICO), Udayana University Center for Research and Application of Satellite Remote Sensing (YUCARS) Yamaguchi University, Japan
  • Abd Rahman As-Syakur Center for Remote Sensing and Ocean Sciences (CReSOS) Udayana University Center for Environmental Research (PPLH), Udayana University

DOI:

https://doi.org/10.24114/jg.v15i1.40772

Abstract

The local active fault in Bali has a small magnitude (M<5) but has destructive potential because it is very close to residential areas. Mapping the fault area on Bali is needed to identify the parameters of faults. This study used gravity data from GGMplus, topographic data from DEMNAS, and lineaments using ALOS-2 PALSAR-2 data. Validation and interpretation using the geological map of Bali and seismicity data. We interpret the subsurface using the gravity derivative method to identify the type of fault movement. Identify fault locations using lineament extraction from SAR data processed by directional filters. The composite image red-green-blue (RGB) for HH, HV, and VV polarization was used for automatic lineament extraction and then corrected manually. The results of the gravity method succeeded in identifying 29 of the 30 faults from the geological map of the Bali sheet and a new spot from PALSAR-2. Bali land has 12 thrust faults, 11 strike-slip faults and six normal faults. The image of PALSAR-2 (L band) has succeeded in making a fault lineament map for the Bali region. The lineament extraction results from PALSAR-2 obtained four new faults (Pesanggaran, Sepang, Tegal Badeng, and Banyuwedang), while four faults were not identified (Tampaksiring Fault, Plaga, Mambal, and Munduk-Rajasa). NE-SW dominates the strike directions, and the dip angles are 45-80 degrees. We propose 30 faults in Bali, including 26 defects from geological maps with changes in length and location shift and four new marks extracted from automatic lineament.Keywords: Remote Sensing, Earthquake, Derivative Gravity, Lineament, SAR 

References

Agastya, I B. O., Diwyastra, P. D., & Hespiantoro, S. (2022). Identifikasi Zona Sesar Menggunakan Pendekatan Geomorfologi Tektonik dan Pemetaan Geologi di Desa Ban, Kabupaten Karangasem, Bali. Jurnal Geominerba 7(1), p. 14-25.

Ahmadi, H. & Pekkan, E. (2021). Fault-Based Geological Lineaments Extraction Using Remote Sensing and GIS”A Review. Geosciences, 11, 183. https://doi.org/10.3390/geosciences11050183.

Aoki, Y., Furuya, M., De Zan, F. et al. (2021). L-band Synthetic Aperture Radar: Current and future applications to Earth sciences. Earth Planets Space 73(56). https://doi.org/10.1186/s40623-021-01363-x.

Ariantana, K., Agastya, I. B. O., Pradana, A. A., & Prameswari, M. D. 2018. Potential of Geological Natural Tourism in Hidden Canyon, Guwang Beji Village, Gianyar District, Bali Province. Proceedings Pekan Ilmiah Tahunan IAGI.

Astra, I M. K. A., Suarbawa, K. N., & Nugroho, H. A. (2014). Interpretasi Struktur Bawah Permukaan Sesar Lokal di Wilayah Singaraja- Bali Menggunakan Analisis Second Vertical Derivative. Megasains 5 (1), p. 49-55.

Bannari, A., El-Battay, A., Saquaque, A. & Miri, A. (2016). PALSAR-FBS L-HH Mode and Landsat-TM Data Fusion for Geological Mapping. Advances in Remote Sensing, 5, p. 246-268. http://dx.doi.org/10.4236/ars.2016.54020.

Camacho, M. and Alvarez, R. (2021). Geophysical Modeling with Satellite Gravity Data: Eigen-6C4 vs. GGM Plus. Engineering, 13, p. 690-706. https://doi.org/10.4236/eng.2021.1312050

Canny, J. 1986. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(6), p. 679“698. https://doi.org/10.1109/TPAMI.1986.4767851

Choi, S., Ryu, I., Lee, Y. C., & Son, Y. 2020. Gravity and magnetic field interpretation to detect deep buried paleobasinal fault lines contributing to intraplate earthquakes: a case study from Pohang Basin, SE Korea, Geophysical Journal International, Volume 220, p. 490“500, https://doi.org/10.1093/gji/ggz464.

D'Alessandro, A., & Stickney, M. 2012. Montana Seismic Network Performance: An Evaluation through the SNES Method. Bulletin of the Seismological Society of America, 102(1), p. 73“87. https://doi.org/10.1785/0120100234

Fitriyani, J., Apriyadi, R. K., Winugroho, T., Hartono, D., Widana, I D. K. K., & Wilopo. (2021). Karakteristik Histori Bencana Indonesia Periode 1815 “ 2019 Berdasarkan Jumlah Bencana, Kematian, Keterpaparan dan Kerusakan Rumah Akibat Bencana. Journal of Science Education 5(3), p. 322-327, https://doi.org/10.33369/pendipa.5.3.322-327.

Ghosh, S., Sivasankar, T., & Anand, G. (2021). Performance evaluation of multi-parametric synthetic aperture radar data for geological lineament extraction. International Journal of Remote Sensing, 42:7, p. 2574-2593, https://doi.org/10.1080/01431161.2020.1856963

Ghosh, T., Hazra, S., & Kumar Das, A. (2022). Potential of ALOS-2 PALSAR-2 StripMap data for lithofacies identification and geological lineament mapping in vegetated fold-thrust belt of Nagaland, India. Advances in Space Research 69(4), p. 1840“186. https://doi.org/10.1016/j.asr.2021.09.007.

Hadiwidjojo, M. M. P., Samodra, H., & Amin, T. C. 1998. Geological Map of The Bali Sheet, Nusa Tenggara, second edition. Geological Research and Development Cente of Indonesia.

Helmi, H., Marliyani, G. I., Nur™aini, S. (2021). Identifikasi Sesar Aktif di Pulau Bali dengan Menggunakan Data Pemetaan Geologi Permukaan dan Morfologi Tektonik. Majalah Geografi Indonesia 35(1), p. 45-53. ISSN 2540-945X. http://dx.doi.org/10.22146/mgi.61928.

Hirt, C, S.J. Claessens, T. Fecher, M. Kuhn, R. Pail, M. Rexer. (2013). New ultra-high resolutions picture of 2 Earth's gravity field, Geophysical Research Letters, Vol 40, https://doi.org/10.1002/grl.50838.

Hirt, C. 2013b. RTM gravity forward-modeling using topography/bathymetry data to improve high-degree global geopotential models in the coastal zone, Marine Geodesy 36(2), p. 1“20, https://doi.org/10.1080/01490419.2013.779334.

Hirt C., M. Kuhn, S.J. Claessens, R. Pail, K. Seitz, T. Gruber. 2014. Study of the Earth's short-scale gravity field using the ERTM2160 gravity model. Computers & Geosciences, 73, p. 71-80, doi: 10.1016/j.cageo.2014.09.00.

IAEA. 2016. Diffuse Seismicity in Seismic Hazard Assessment for Site Evaluation of Nuclear Installations, Safety Reports Series No. 89. International Atomic Energy Agency, Vienna, Austria.

Iswari, M. Y. & Anggraini, K. 2018. DEMNAS: Model Digital Ketinggian Nasional untuk Aplikasi Kepesisiran. Oseana 28(4), p. 68-80. https://doi.org/10.14203/oseana.2018.Vol.43No.4.2

JAXA. 2008. ALOS Data Users Handbook Revision C. Earth Observation Research and Application Center, Japan Aerospace Exploration Agency.

JAXA. 2014. ALOS-2/PALSAR-2 Level 1.1/1.5/2.1/3.1 CEOS SAR Product Format Description, Japan Aerospace Exploration Agency.

JAXA. (2022). PALSAR-2. Available in URL: https://www.eorc.jaxa.jp/ALOS/en/alos-2/a2_sensor_e.htm accessed July 19th, 2022.

Jensen, J. R. (2015). Introductory Digital Image Processing: A Remote Sensing Perspective, 4th edn. Prentice-Hall, Englewood Cliffs.

Ming Y, Ma G, Li L, Han J, Wang T. 2021. The Spatial Different Order Derivative Method of Gravity and Magnetic Anomalies for Source Distribution Inversion. Remote Sensing 13(5):964. https://doi.org/10.3390/rs13050964

Pour, A.B. & Hashim, M. (2015). Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia. Ore Geology Reviews, Vol. 64, P. 13-22, ISSN 0169-1368, https://doi.org/10.1016/j.oregeorev.2014.06.011

Pour, A. B. & Hashim, M. (2016). Geological Features Mapping Using Palsar-2 Data in Kelantan River Basin, Peninsular Malaysia. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W1, 65“70, https://doi.org/10.5194/isprs-archives-XLII-4-W1-65-2016.

Pratama, I P. D. (2020). Pemetaan dan Analisis Probabilistic Seismic Hazard Analysis (PSHA) Radius 500 km dari Denpasar. Jurnal Geografi GEA 20(1), p. 54-62. https://doi.org/10.17509/gea.v20i1.23299

Purnomo, B. J. & Pichler, T. (2015). Geothermal systems on the island of Bali, Indonesia. Journal of Volcanology and Geothermal Research, 304, p. 349-358. https://doi.org/10.1016/j.jvolgeores.2015.09.016

PuSGeN. 2017. Peta Sumber Daya dan Bahaya Gempa Indonesia Tahun 2017. Pustlitbang PUPR.

Soehaimi, A., Setiawan, J. H., & Marjiyono. (2014). Seismotectonic and Active Faults of Bali Island. 5th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), Busan, Korea.

Soehaimi, A., & Setianegara, R. (2015). Active Fault Study in the Eastern Coast of Bali Island, Indonesia. 6th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), Pescina, Funcino Basin, Italy.

Sulaeman, C., Hidayati, S., Omang, A., & Priambodo, I.C. (2018). Tectonic Model of Bali Island Inferred from GPS Data. Indonesian Journal on Geoscience, 5 (1), p. 81-91. https://doi.org/10.17014/ijog.5.1.81-91

Sumintadireja, P., Dahrin, D., & Grandis, H. 2018. A Note on the Use of the Second Vertical Derivative (SVD) of Gravity Data with Reference to Indonesian Cases. J. Eng. Technol. Sci., Vol. 50, No. 1, p. 127-139, https://doi.org/10.5614/j.eng.technol.sci.2018.50.1.9

Suprianto, A., Supriyadi, Priyantari, N., & Cahyono, E. B. (2021). Correlation Between GGMPlus, Topex and BGI Gravity Data in Volcanic Areas of Java Island. Journal of Physics: Conference Series. 1825. 012023. https://doi.org/10.1088/1742-6596/1825/1/012023.

Telford, W., Geldart, L. P. & Sheriff, R. 2004. Applied Geophysics, Second Edition. Cambridge: Cambridge University Press.

Ustinov, S., Ostapchuk, A., Svecherevskiy, A., Usachev, A., Gridin, G., Grigor™eva, A., & Nafigin, I. 2022. Prospects of Geoinformatics in Analyzing Spatial Heterogeneities of Microstructural Properties of a Tectonic Fault. Appl. Sci.12, 2864. https://doi.org/10.3390/app12062864

Veci, L. (2015). ALOS PALSAR Orthorectification Tutorial. Array Sistema Computing Inc.: North York, ON, Canada.

Verstappen, H. 2010. Indonesian Landforms and Plate Tectonics. Indonesian Journal on Geoscience 5(3). https://doi.org/10.17014/ijog.v5i3.103.

Wiemer, S. (2001). A Software Package to Analyze Seismicity: ZMAP. Seismological Research Letters, 72, p. 373-382, http://dx.doi.org/10.1785/gssrl.72.3.373

Wijaya, P. A., Agastya, I. B. O., & Satya, Y. (2020). Identification of Busungbiu Fault Zone from Gravity Data, Earthquake Data, and Geological Approach. The 45th Annual Scientific Meeting of Himpunan Ahli Geofisika Indonesia.

Yan, J., Chen, X., Meng, G., Lü, Q., Deng, Z., Qi, G., & Tang, H. 2019. Concealed faults and intrusions identification based on multiscale edge detection and 3D inversion of gravity and magnetic data: A case study in Qiongheba area, Xinjiang, Northwest China. Interpretation. 7(2)T331“T345. doi: https://doi.org/10.1190/INT-2018-0066.1

Yeomans, C. M., Middleton, M., Shail, R. K., Grebby, S., & Lusty, P. A. J. 2019. Integrated Object-Based Image Analysis for semi-automated geological lineament detection in southwest England, Computers & Geosciences, Vol. 123, pp. 137-148, ISSN 0098-3004, https://doi.org/10.1016/j.cageo.2018.11.005.

Downloads

Published

2023-02-11

How to Cite

Pratama, I. P. D., Osawa, T., & As-Syakur, A. R. (2023). Identification of Fault Zone in Bali Using GGMPlus Gravity and Alos-2 Palsar-2 Data. JURNAL GEOGRAFI, 15(1), 46–63. https://doi.org/10.24114/jg.v15i1.40772