THE ESTIMATION OF FLOOD-AFFECTED AREA IN THE DOWNSTREAM OF CODE RIVER, YOGYAKARTA, INDONESIA
DOI:
https://doi.org/10.24114/jg.v14i2.34651Abstract
The rapid development of settlements and sediment deposition has increasingly narrowed the drainage in the Code River. This condition causes floods and wider distribution of the affected areas. This research aims to estimate the maximum amount of rain, predict the probability of flood, and predict flood-prone areas in the Code River. Data were collected by observation, remote sensing image interpretations, literature studies, and documentation. Data analysis was performed using Log Pearson Type III for design rainfall analysis, Weibull formula for flood probability analysis, and rational method for planning maximum discharge analysis. Flood modeling is carried out by the iteration method. The results show: (1) the maximum amount of rain based on the calculated design rainfall with a return period of 5 to 40 years is R5 = 106.83 mm, R10 = 116.67 mm, R20 = 127.30 mm, R40 = 134.25 mm, (2) the probability of flood that is predicted from the maximum discharge caused by the design rainfall at each return period is Q5 = 82.45 m3/sec, Q10 = 89.42 m3/sec, Q20 = 96.95 m3/sec, Q40 = 101.86 m3/sec. (3) Inundation of the flood target area in the 5-year return period covers an area of 0.4456 km2, the 10-year return period covers 0.5209 km2, the 20-year return period covers 0.6023 km2, the 40-year return period covers 0.6555 km2. This paper presents information on the potential for a flood at various return periods to increase preparedness and reduce risks due to flood disasters.Keywords: Disaster, Floods, Estimated Flood-Affected Areas, Code River, YogyakartaReferences
Afungang, R., & Bateira, C. (2017). Statistical modelling of extreme rainfall return periods and associated hazard in the Bamenda Mountain N.W. Cameroon. Revista de Geografia e Ordenamento Do Territorio, 9, 5“19.
Amri, M. R., Yulianti, G., Yunus, R., Wiguna, S., Adi, A. W., Ichwana, A. N., Randongkir, R. E., & Septian, R. T. (2016). Risiko Bencana Indonesia (Disasters Risk of Indonesia). In BNPB.
Asiedu, J. B. (2020). URBAN AREAS : A LOOK AT THE CAUSES ement. Theoretical and Empirical Researches in Urban Management, 15(1), 24“41.
Avia, L. (2019). Change in rainfall per-decades over Java Island, Indonesia. IOP Conference Series: Earth and Environmental Science 374 012037.
Bathrellos, G. D., Karymbalis, E., Skilodimou, H. D., Gaki-Papanastassiou, K., & Baltas, E. A. (2016). Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environmental Earth Sciences, 75(4), 319. https://doi.org/10.1007/s12665-015-5157-1
BPS-Statistics of DI Yogyakarta Province. (2016). Daerah Istimewa Yogyakarta in Figures (Daerah Istimewa Yogyakarta dalam Angka). Statistical Agency of Indonesia.
BPS-Statistics of DI Yogyakarta Province. (2020). Daerah Istimewa Yogyakarta in Figures (Daerah Istimewa Yogyakarta dalam Angka). Statistical Agency of Indonesia.
Campenhaut, J. ., Houbrechts, G., Peeters, A., & Petit, F. (2020). Return period of characteristics discharges from the comparison between partial duration and annual series application to the Walloon Rivers (Belgium). Water, 12(792), 1“33.
Deraman, W. H. A. ., Mutalib, N. J. ., & Mukhtar, N. . (2017). Determination of return period for flood frequency analysis using normal and related distribution. IOP Conference Series: Journal of Physics Conference Series 890 012162.
Diaf, M., Hazzab, A., Yahiaoui, A., & Belkendil, A. (2020). Characterization and frequency analysis of flooding solid flow in semi-arid zone: case of Mekerra catchment in the north-west of Algeria. Applied Water Science, 10(2), 1“15. https://doi.org/10.1007/s13201-019-1132-4
Ewea, H. A., Al-Amri, N. S., & Elfeki, A. M. (2020). Analysis of maximum flood records in the arid environment of Saudi Arabia. Geomatics, Natural Hazards and Risk, 11(1), 1743“1759. https://doi.org/10.1080/19475705.2020.1810783
Farooq, M., Shafique, M., & Khattak, M. . (2018). Flood frequency analysis of River Swat using Log Pearson Type 3 generalized extreme value normal and gumbel max distribution methods. Asian Journal of Geosciences, 11(216), 1“10.
Feng, B., Zhang, Y., & Bourke, R. (2021). Urbanization impacts on flood risks based on urban growth data and coupled flood models. Natural Hazards, 106(1), 613“627. https://doi.org/10.1007/s11069-020-04480-0
Griffis, V., & Stedinger, J. . (2007). Log-Pearson Type 3 distribution and its application in flood frequency analysis. I: Distribution chacateristics. Journal of Hydrologic Engineering, 12, 482“491.
Guerreiro, S. B., Glenis, V., Dawson, R. J., & Kilsby, C. (2017). Pluvial flooding in European cities-A continental approach to urban flood modelling. Water, 9(4). https://doi.org/10.3390/w9040296
Kumar, R. (2019). Flood frequency analysis of the rapti River Basin using Log Pearson Type-III and Gumbel Extreme Value-1 Methods. Journal of Geological Society of India, 94, 480“484.
Marfai, M. A., & Candra, R. F. . (2018). GIS Exercise Book: Coastal Monitoring and Hazard Modelling. BPFG UGM.
Mel, R. A., Viero, D. P., Carniello, L., & D™Alpaos, L. (2020). Optimal floodgate operation for river flood management: The case study of Padova (Italy). Journal of Hydrology: Regional Studies, 30, 100702. https://doi.org/10.1016/j.ejrh.2020.100702
Morrison, J. E., & Smith, J. a. (2001). Scaling properties of flood peaks. Extremes, 4, 5“22.
Mouri, G. ., Minoshima, V., Golosov, S., Chalov, S., Seto, S., Yoshimura, K., Nakamura, N., & Oki, T. (2013). Probability assessment of flood and sediment disasters in Japan using the Total Runoff-Integrating Pathways model. International Journal of Disaster Risk Reduction, 3, 31“43.
Nadarajah, S., & Shiau, J. T. (2005). Analysis of extreme food events for the pachang river, Taiwan. Water Resources Management, 19(4), 363“374. https://doi.org/10.1007/s11269-005-2073-2
Nurhadi, Sumunar, D. R. S., & Khotimah, N. (2016). Analisis Kerentanan Banjir dan Penanggulangan Bencana di Daerah Aliran Sungai Code Kota Yogyakarta. Jurnal Penelitian Saintek, 21(2), 75“86. https://doi.org/10.21831/jps.v21i2.10553
Oruonye, E. (2016). Morphometry and Flood in Small Drainage Basin: Case Study of Mayogwoi River Basin in Jalingo, Taraba State Nigeria. Journal of Geography, Environment and Earth Science International, 5(1), 1“12. https://doi.org/10.9734/jgeesi/2016/23379
Pambudi, A. S. (2022). Problems of Local Floods and Their Relation To. Indonesian Journal of Applied Research, 3(1), 10“22. https://doi.org/10.30997/ijar.v3i1.178
Purwantara, S., Ashari, A., & Ibrahim, M. H. Bin. (2020). The characteristics of infiltration on the southern flank of Merapi Volcanic Plain, Yogyakarta, Indonesia. International Journal of GEOMATE, 19(74), 201“209. https://doi.org/10.21660/2020.74.52941
Rafiq, F., Ahmed, S., Ahmad, S., & Khan, A. A. (2016). Urban Floods in India. International Journal of Scientific & Engineering Research, 7(1), 721“734.
Ress, L. D., Hung, C. L. J., & James, L. A. (2020). Impacts of urban drainage systems on stormwater hydrology: Rocky Branch Watershed, Columbia, South Carolina. Journal of Flood Risk Management, 13(3), 1“13. https://doi.org/10.1111/jfr3.12643
Salazar-Galán, S., GarcÃa-Bartual, R., Salinas, J. L., & Francés, F. (2021). A process-based flood frequency analysis within a trivariate statistical framework. Application to a semi-arid Mediterranean case study. Journal of Hydrology, 603(October). https://doi.org/10.1016/j.jhydrol.2021.127081
Sun, X., Li, R., Shan, X., Xu, H., & Wang, J. (2021). Assessment of climate change impacts and urban flood management schemes in central Shanghai. International Journal of Disaster Risk Reduction, 65(August 2020), 102563. https://doi.org/10.1016/j.ijdrr.2021.102563
Sunarto, & Rahayu, L. (2006). The Phenomenon of Natural Disaster in Indonesia (Fenomena Bencana Alam di Indonesia). Jurnal Kebencanaan Indonesia, 1(1), 1“5.
Supari, Sudibyakto, Ettema, J., & Aldrian, E. (2012). Spatiotemporal characteristics of extreme rainfall events over Java Island Indonesia. Indonesian Journal of Geography, 44(1), 62“68.
Sutikno, Santosa, L. W., Widiyanto, Kurniawan, A., & Purwanto, T. H. (2007). œThe Merapi Kingdom: Natural resources and carrying capacity (œKerajaan Merapi: Sumberdaya alam dan daya dukungnya). BPFG UGM.
Szulczewski, W., & Jakubowski, W. (2018). The Application of Mixture Distribution for the Estimation of Extreme Floods in Controlled Catchment Basins. Water Resources Management, 32(10), 3519“3534. https://doi.org/10.1007/s11269-018-2005-6
Tian, D., & Wang, L. (2022). BLP3-SP: A Bayesian Log-Pearson Type III Model with Spatial Priors for Reducing Uncertainty in Flood Frequency Analyses. Water (Switzerland), 14(6). https://doi.org/10.3390/w14060909
Verstappen, H. T. (2010). Indonesian Landforms and Plate Tectonics. Jurnal Geologi Indonesia, 5(3), 197“207.
Verstappen, H. T. (2013). Garis Besar Geomorfologi Indonesia (Suratman (ed.); 1st ed.). Gadjah Mada University Press.
Wing, O. E. J., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M., Neal, J. C., Porter, J. R., & Kousky, C. (2022). Inequitable patterns of U.S. flood risk in the Anthropocene. Nature Climate Change, 12(2), 156“162. https://doi.org/10.1038/s41558-021-01265-6
Yang, M., Sang, Y. F., Sivakumar, B., Ka Shun Chan, F., & Pan, X. (2020). Challenges in urban stormwater management in Chinese cities: A hydrologic perspective. Journal of Hydrology, 591, 125314. https://doi.org/10.1016/j.jhydrol.2020.125314
Yang, X., & Wang, W. (2017). Design tide hydrograph with a given risk threshold by a copula-based multivariate method. China Ocean Engineering, 31(4), 504“509. https://doi.org/10.1007/s13344-017-0057-7
Zhang, R., Wang, J., Ma, Y., Chen, G., Zeng, Q., & Zhou, C. (2016). Sedimentary microfacies and palaeogeomorphology as well as their controls on gas accumulation within the deep-buried Cretaceous in Kuqa Depression, Tarim Basin, China. Journal of Natural Gas Geoscience, 1(1), 45“59. https://doi.org/10.1016/j.jnggs.2016.04.003