PHYSICAL AND SOCIAL VULNERABILITY IN THE HOUSHOLD LEVEL TOWARDS TSUNAMI IN SADENG COASTAL AREA, GUNUNGKIDUL

Authors

  • Fitria Nucifera Program Studi Geografi Universitas AMIKOM Yogyakarta https://orcid.org/0000-0001-8024-0845
  • Sutanto Trijuni Putro Jurusan Pendidikan Geografi Universitas Negeri Yogyakarta
  • Sakinatul Afidah Program Studi Geografi Universitas AMIKOM Yogyakarta

DOI:

https://doi.org/10.24114/jg.v13i1.19160

Abstract

Tsunami occurrence in Indonesia has continued to increase until 2018. The southern coast of Java is one of the tsunami-prone areas because it is located in a subduction zone. Study location is Sadeng coastal area which is located in the south coast of DIY Province. Disaster vulnerability studies at the household level is still limited, so this paper aims to identify physical and social vulnerability to tsunami hazard at the household level. The data of this research was obtained by invterviewing household respondents and observing physical condition of building. Identification of physical vulnerability was performed using modified SCHEMA and PTVA-3 method, while social vulnerability assessment considered demographic and socio-economic parameters. Total vulnerability was retrieved from matrix analysis of physical and social vulnerability classification. The study shows that 64 % households in Sadeng coastal areas are classified to moderate vulnerability, 30% of households are high vulnerability and 6 % of households are low vulnerability.  High vulnerability is characterized by households which occupy non-permanent houses, have no economic assets, and have a high dependency ratio. Moderate vulnerability is characterized by households which occupy semi-permanent house, have economic assets, but have high dependency ratio. Low vulnerability is characterized by households which live in government-owned buildings, have economic assets, and have low dependency ratio. Keywords: tsunami, vulnerability, building`s physical vulnerability, social vulnerabilityKejadian tsunami di Indonesia terus mengalami peningkatan hingga tahun 2018. Pesisir selatan Jawa merupakan salah satu kawasan yang terpapar bahaya tsunami karena terletak pada zona subduksi. Lokasi kajian adalah kawasan pesisir Sadeng yang berlokasi di pesisir selatan Propinsi DIY. Kajian kerentanan bencana di tingkat rumah tangga belum banyak dilakukan, sehingga tulisan ini bertujuan untuk melakukan identifikasi kerentanan fisik bangunan dan sosial terhadap bencana tsunami di tingkat rumah tangga. Perolehan data penelitian dilakukan dengan wawancara responden rumahtangga dan observasi kondisi fisik bangunan. Identifikasi kerentanan fisik bangunan dilakukan dengan metode SCHEMA dan PTVA-3 yang dimodifikasi, sedangkan penilaian kerentanan sosial mempertimbangkan parameter kependudukan dan sosial ekonomi. Nilai total kerentanan diperoleh dari analisis matriks klasifikasi kerentanan sosial dan fisik bangunan. Kajian menunjukkan bahwa sebesar 64 % rumahtangga di kawasan pesisir Sadeng termasuk dalam kelas kerentanan sedang, 30 % rumahtangga dalam kerentanan tinggi dan 6 % rumahtangga dalam kerentanan rendah. Tingkat kerentanan tinggi dicirikan dengan rumahtangga yang menempati rumah tinggal non-permanen, tidak memiliki asset ekonomi, dan memiliki angka ketergantungan yang tinggi. Tingkat kerentanan sedang dicirikan dengan rumahtangga yang menempati rumah tinggal semi permanen, memiliki asset ekonomi namun memiliki angka ketergantungan yang tinggi. Tingkat kerentanan rendah dicirikan dengan rumahtangga yang tinggal pada bangunan milik pemerintah, memiliki asset ekonomi, dan memiliki angka ketergantungan yang rendah.  Kata kunci: tsunami, kerentanan, kerentanan fisik bangunan, kerentanan sosial

References

Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268“281. https://doi.org/10.1016/j.gloenvcha.2006.02.006

Aerts, J. C. J. H., Botzen, W. J., Clarke, K. C., Cutter, S. L., Hall, J. W., Merz, B., ¦ Kunreuther, H. (2018). Integrating human behaviour dynamics into flood disaster risk assessment /704/242 /706/689/2788 /706/2805 perspective. Nature Climate Change, 8(3), 193“199. https://doi.org/10.1038/s41558-018-0085-1

Aguirre-Ayerbe, I., Martínez Sánchez, J., Aniel-Quiroga, I., González-Riancho, P., Al-Yahyai, S., González, M., & Medina, R. (2018). From tsunami risk assessment to disaster risk reduction - The case of Oman. Natural Hazards and Earth System Sciences, 18(8), 2241“2260. https://doi.org/10.5194/nhess-18-2241-2018

Athukorala, P., & Resosudarmo, B. P. (2005). The Indian Ocean Tsunami: Economic Impact, Disaster Management, and Lessons. Asian Economic Papers, 4(1), 1“39. https://doi.org/10.1162/asep.2005.4.1.1

Bakkensen, L. A., Fox-Lent, C., Read, L. K., & Linkov, I. (2017). Validating Resilience and Vulnerability Indices in the Context of Natural Disasters. Risk Analysis, 37(5), 982“1004. https://doi.org/10.1111/risa.12677

Birkmann, J., Cutter, S. L., Rothman, D. S., Welle, T., Garschagen, M., van Ruijven, B., ¦ Pulwarty, R. (2015). Scenarios for vulnerability: opportunities and constraints in the context of climate change and disaster risk. Climatic Change, 133(1), 53“68. https://doi.org/10.1007/s10584-013-0913-2

BMKG. (2019). Katalog Tsunami Indonesia Tahun 416-2018: Per-Wilayah.

Chiaro, G., Kiyota, T., Pokhrel, R. M., Goda, K., Katagiri, T., & Sharma, K. (2015). Reconnaissance report on geotechnical and structural damage caused by the 2015 Gorkha Earthquake, Nepal. Soils and Foundations, 55(5), 1030“1043. https://doi.org/10.1016/j.sandf.2015.09.006

Chmutina, K., & von Meding, J. (2019). A Dilemma of Language: œNatural Disasters in Academic Literature. International Journal of Disaster Risk Science, 10(3), 283“292. https://doi.org/10.1007/s13753-019-00232-2

Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2003). Hazards, vulnerability and environmental justice. Social Science Quarterly, 84(2), 242“261. https://doi.org/10.4324/9781849771542

Dall`Osso, F., Gonella, M., Gabbianello, G., Withycombe, G., & Dominey-Howes, D. (2009). A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage. Natural Hazards and Earth System Sciences, 9, 1557“1565.

Dalrymple, R. A., & Kriebel, D. L. (2005). Lesson in Engineering from the Tsunami in Thailand. The Bridge: Linking Engineering and Society, 35(2), 4“13. https://doi.org/10.1109/TIGA.1967.4180765

de León, J. C. V. (2008). Rapid Assessment of Potential Impacts of a Tsunami. Lessons from the Port of Galle in Sri Lanka. Source (Studies of the University: Research, Counsel, Education). Bonn.

De Risi, R., & Goda, K. (2017). Probabilistic Earthquake-tsunami Hazard Assessment: The First Step Towards Resilient Coastal Communities. Procedia Engineering, 198(September 2016), 1058“1069. https://doi.org/10.1016/j.proeng.2017.07.150

Ghobarah, A., Saatcioglu, M., & Nistor, I. (2006). The impact of the 26 December 2004 earthquake and tsunami on structures and infrastructure. Engineering Structures, 28(2), 312“326. https://doi.org/10.1016/j.engstruct.2005.09.028

González-Riancho, P., Aguirre-Ayerbe, I., García-Aguilar, O., Medina, R., González, M., Aniel-Quiroga, I., ¦ Gavidia, F. (2014). Integrated tsunami vulnerability and risk assessment: Application to the coastal area of El Salvador. Natural Hazards and Earth System Sciences, 14(5), 1223“1244. https://doi.org/10.5194/nhess-14-1223-2014

Gregory, D., Johnston, R., Pratt, G., Watts, M. J., & Whatmore, S. (Eds.). (2009). The dictionary of human geography. The dictionary of human geography. (5th ed.). West Sussex, England: Wiley Blackwell. https://doi.org/10.2307/633383

Hamzah, L., Puspito, N., & Imamura, F. (2000). Tsunami Catalog and Zones in Indonesia. Journal of Natural Disaster Science, 22(1), 25“43. Retrieved from https://www.jstage.jst.go.jp/article/jnds/22/1/22_1_25/_pdf

Hizbaron, D. R., Hadmoko, D. S., Samodra, G., Dalimunthe, S. A., & Sartohadi, J. (2010). Tinjauan Kerentanan, Risiko dan Zonasi Rawan Bahaya Rockfall di Kulonprogo, Yogyakarta. Forum Geografi2, 24(2), 119“136. https://doi.org/DOI: https://doi.org/10.23917/forgeo.v24i2.5021

Islam, S. M. Z., Khatun, D., & Amin, A. (2016). A Study on the Structural Strength and Behaviour of Composite Profiled Steel Sheet with Plywood. Applied Mechanics and Materials, 860, 105“110. https://doi.org/10.4028/www.scientific.net/amm.860.105

León, J., & March, A. (2016). An urban form response to disaster vulnerability: Improving tsunami evacuation in Iquique, Chile. Environment and Planning B: Planning and Design, 43(5), 826“847. https://doi.org/10.1177/0265813515597229

Lindell, M. K., & Prater, C. S. (2003). Assessing community impacts of natural disasters. Natural Hazards Review, 4(4), 176“185. https://doi.org/10.1061/(ASCE)1527-6988(2003)4:4(176)

Linkov, I., Bridges, T., Creutzig, F., Decker, J., Fox-Lent, C., Kröger, W., ¦ Thiel-Clemen, T. (2014). Changing the resilience paradigm. Nature Climate Change, 4(6), 407“409. https://doi.org/10.1038/nclimate2227

Linton, D., Gupta, R., Cox, D., Van De Lindt, J., Oshnack, M. E., & Clauson, M. (2013). Evaluation of tsunami loads on wood-frame walls at full scale. Journal of Structural Engineering (United States), 139(8), 1318“1325. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000644

Marfai, M. A., King, L., Singh, L. P., Mardiatno, D., Sartohadi, J., Hadmoko, D. S., & Dewi, A. (2008). Natural hazards in Central Java Province, Indonesia: An overview. Environmental Geology, 56(2), 335“351. https://doi.org/10.1007/s00254-007-1169-9

McEntire, D. (2011). Understanding and reducing vulnerability: From the approach of liabilities and capabilities. Disaster Prevention and Management: An International Journal, 20(3), 294“313. https://doi.org/10.1108/09653561111141736

Moon, W. C., Chiew, L. Q., Cheong, K. W., Tee, Y. C., Chun, J. B., & Lau, T. L. (2019). An experimental study for estimating tsunami wave forces acting on building with seaward and landward macroroughness. Ocean Engineering, 186(July 2018), 106116. https://doi.org/10.1016/j.oceaneng.2019.106116

Nucifera, F., Riasasi, W., Putro, S. T., & Marfai, M. A. (2019). Penilaian Kerentanan dan Kesiapsiagaan Bencana Tsunami di Pesisir Sadeng, Gunungkidul. Jurnal Geografi, 11(2), 182“192. https://doi.org/10.24114/jg.v11i2.11475

O™Brien, G., O™Keefe, P., Rose, J., & Wisner, B. (2006). Climate change and disaster management. Disasters, 30(1), 64“80. https://doi.org/10.1111/j.1467-9523.2006.00307.x

Osaragi, T. (2002). Classification Methods for Spatial Data Representation (CASA Working Papers 40). London, UK. Retrieved from https://www.researchgate.net/publication/32884891_Classification_methods_for_spatial_data_representation/link/53f483510cf2fceacc6e86d2/download

Reese, S., Cousins, W. J., Power, W. L., Palmer, N. G., Tejakusuma, I. G., & Nugrahadi, S. (2007). Tsunami vulnerability of buildings and people in South Java - Field observations after the July 2006 Java tsunami. Natural Hazards and Earth System Science, 7(5), 573“589. https://doi.org/10.5194/nhess-7-573-2007

Sawai, M. (2011). Who is Vulnerable During Tsunamis? Experiences From the Great East Japan Earthquake 2011 and the Indian Ocean Tsunami 2004. UN Economic and Social Commission for Asia and the Pacific, 1“19.

Shah, A. A., Ye, J., Abid, M., Khan, J., & Amir, S. M. (2018). Flood hazards: household vulnerability and resilience in disaster-prone districts of Khyber Pakhtunkhwa province, Pakistan. Natural Hazards, 93(1), 147“165. https://doi.org/10.1007/s11069-018-3293-0

Shapira, S., Aharonson-Daniel, L., & Bar-Dayan, Y. (2018). Anticipated behavioral response patterns to an earthquake: The role of personal and household characteristics, risk perception, previous experience and preparedness. International Journal of Disaster Risk Reduction, 31(January), 1“8. https://doi.org/10.1016/j.ijdrr.2018.04.001

StÇŽngÇŽ, I. C., & Grozavu, A. (2012). Quantifying human vulnerability in rural areas: Case study of Tutova Hills (Eastern Romania). Natural Hazards and Earth System Science, 12(6), 1987“2001. https://doi.org/10.5194/nhess-12-1987-2012

Tinti, S., Tonini, R., Bressan, L., Armigliato, A., Gardi, A., Guillande, R., ¦ Scheer, S. (2011). Handbook of Tsunami Hazard and Damage Scenarios. (JRC-IPSC, Ed.). Bologna: JRC-IPSC. https://doi.org/10.2788/21259

Tomiczek, T., Prasetyo, A., Mori, N., Yasuda, T., & Kennedy, A. (2017). Effects of a macro-roughness element on tsunami wave amplification, pressures, and loads: Physical model and comparison to Japanese and US Design Equations. Coastal Engineering Journal, 59(1). https://doi.org/10.1142/S0578563417500048

UNESCO. (2015). Tsunami Risk Assessment and Mitigation for the Indian Ocean: knowing your tsunami risk-and what tod o about it. IOC MAnualas and Guides No. 52 (Second). Paris.

UNISDR. (2009). 2009 UNISDR Terminology on Disaster Risk Reduction. Geneva: UNISDR. https://doi.org/10.4324/9781351138444-36

United Nation. (2015). Sendai Framework for Disaster Risk Reduction 2015-2030. Framework for Disaster Risk Reduction. Sendai. Retrieved from https://www.preventionweb.net/files/43291_sendaiframeworkfordrren.pdf

United Nations. (2015). Infrastructure and Disaster. In Conference on DIsaster Risk Reduction. Sendai: United Nations. Retrieved from https://www.preventionweb.net/files/40429_infrastructure.pdf

Vatsa, K. S. (2004). Risk, Vulnerability, and Asset-based Approach to Disaster Risk Management. International Journal of Sociology, 24(10), 1“48.

Wibowo, T. W., Mardiatno, D., & Sunarto. (2017). Pemetaan Risiko Tsunami terhadap Bangunan secara Kuantitatif. Majalah Geografi Indonesia, 31(2), 68“78. https://doi.org/DOI: https://doi.org/10.22146/mgi.25493

Wisner, B., Blaikie, P., Cannon, T., & Davis, I. (2004). At Risk: Ntural hazards, people vulnerability and disasters. Feuillets de Radiologie (Second, Vol. 43). New York: Routledge. Taylor & Francis Group. Retrieved from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed6&NEWS=N&AN=2003372014

Yang, S., He, S., Du, J., & Sun, X. (2015). Screening of social vulnerability to natural hazards in China. Natural Hazards, 76(1), 1“18. https://doi.org/10.1007/s11069-014-1225-1

Yoon, D. K. (2012). Assessment of social vulnerability to natural disasters: A comparative study. Natural Hazards, 63(2), 823“843. https://doi.org/10.1007/s11069-012-0189-2

Yoon, Dong Keun, & Jeong, S. (2016). Assessment of Community Vulnerability to Natural Disasters in Korea by Using GIS and Machine Learning Techniques. In E. Kim & B. H. S. Kim (Eds.), Assessment of Community Vulnerability to Natural Disasters in Korea by Using GIS and Machine Learning Techniques (pp. 123“140). Singapore: Springer. https://doi.org/10.1007/978-981-10-0300-4

Zea Escamilla, E., & Habert, G. (2015). Global or local construction materials for post-disaster reconstruction? Sustainability assessment of twenty post-disaster shelter designs. Building and Environment, 92, 692“702. https://doi.org/10.1016/j.buildenv.2015.05.036

Zhou, Y., Li, N., Wu, W., Wu, J., & Shi, P. (2014). Local spatial and temporal factors influencing population and societal vulnerability to natural disasters. Risk Analysis, 34(4), 614“639. https://doi.org/10.1111/risa.12193

Downloads

Published

2021-02-15

How to Cite

Nucifera, F., Putro, S. T., & Afidah, S. (2021). PHYSICAL AND SOCIAL VULNERABILITY IN THE HOUSHOLD LEVEL TOWARDS TSUNAMI IN SADENG COASTAL AREA, GUNUNGKIDUL. JURNAL GEOGRAFI, 13(1), 59–75. https://doi.org/10.24114/jg.v13i1.19160