RAINFALL THRESHOLDS FOR LANDSLIDE IN GARUT REGENCY, WEST JAVA USING HIMAWARI-8 DATA

Authors

  • Jalu Tejo Nugroho Pusat Pemanfaatan Penginderaan Jauh, Lembaga Penerbangan dan Antariksa Nasional (LAPAN)
  • Nanik Suryo Haryani Pusat Pemanfaatan Penginderaan Jauh, Lembaga Penerbangan dan Antariksa Nasional (LAPAN)
  • Fajar Yulianto Pusat Pemanfaatan Penginderaan Jauh, Lembaga Penerbangan dan Antariksa Nasional (LAPAN)
  • Mohammad Ardha Pusat Pemanfaatan Penginderaan Jauh, Lembaga Penerbangan dan Antariksa Nasional (LAPAN)

DOI:

https://doi.org/10.24114/jg.v13i1.18049

Abstract

Landslide was one of natural disasters that affected by the weather. The intensity of landslide in Indonesia tended to increase from year to year with a larger area distribution. Remote sensing was a method that can be used to support disaster mitigation and response activities including landslide because this technology allows monitoring and analysis both spatially and temporally. One of the remote sensing satellites that can be used for monitoring landslide was Himawari-8. This weather satellite was launched in 2014 and had a temporal resolution of 10 minutes making it effective for meteorological, environmental and disaster observations. This research has used Himawari-8 rainfall data which extracted from cloud top temperature to determine the intensity of rainfall that causes landslide in Garut Regency. The daily accumulation of rainfall for five days before the landslide event up to five days after the landslide event has been investigated statistically to analyze the conditions of rainfall that trigger landslides. Rainfall thresholds for landslide was determined by the intensity maximum of daily accumulation. It was found that the intensity of rainfall that has potential to cause landslides based on the threshold value is as follows: Malangbong District 60.3 mm/day, Banjarwangi District 32.3 mm/day, Pasirwangi District 36.9 mm/day, Cisewu District 35.1 mm/day and Talegong District 52.8 mm/day. Landslide in four districts have corresponded with the day where the intensity of rainfall was maximum. Meanwhile for Talegong District, the landslide was occurred a day after its maximum.Keywords: rainfall, Himawari-8, landslide, remote sensing, thresholdLongsor merupakan salah satu bencana alam yang dipengaruhi oleh cuaca. Intensitas longsor di Indonesia cenderung meningkat dari tahun ke tahun dengan sebaran wilayah yang lebih luas. Penginderaan jauh merupakan metode yang dapat digunakan untuk mendukung kegiatan mitigasi dan tanggap bencana termasuk longsor karena teknologi ini memungkinkan pemantauan dan analisis baik secara spasial maupun temporal. Salah satu satelit penginderaan jauh yang dapat digunakan untuk pemantauan longsor adalah Himawari-8. Satelit cuaca ini diluncurkan pada tahun 2014 dan memiliki resolusi temporal 10 menit sehingga efektif untuk pengamatan meteorologi, lingkungan dan bencana. Penelitian ini menggunakan data curah hujan Himawari-8 yang diekstrak dari suhu puncak awan untuk mengetahui intensitas curah hujan penyebab longsor di Kabupaten Garut. Akumulasi curah hujan harian selama lima hari sebelum kejadian longsor sampai dengan lima hari setelah kejadian longsor diteliti secara statistik untuk menganalisis kondisi curah hujan yang memicu terjadinya longsor. Ambang batas curah hujan untuk longsor ditentukan oleh intensitas maksimum akumulasi harian. Diketahui bahwa intensitas curah hujan yang berpotensi menimbulkan longsor berdasarkan nilai ambang batas adalah sebagai berikut: Kecamatan Malangbong 60,3 mm / hari, Kecamatan Banjarwangi 32,3 mm / hari, Kecamatan Pasirwangi 36,9 mm / hari, Kecamatan Cisewu 35,1 mm / hari dan Kecamatan Talegong 52,8 mm / hari. Tanah longsor di empat kecamatan telah sesuai dengan hari dimana intensitas curah hujan maksimal. Sedangkan untuk Kecamatan Talegong, longsor terjadi sehari setelah maksimumnya.Kata kunci: curah hujan, Himawari-8, longsor, penginderaan jauh, ambang batas 

References

BNPB, 2014. Indeks Risiko Bencana Indonesia Tahun 2013. Direktorat Pengurangan Risiko Bencana, Deputi Bidang Pencegahan dan Kesiapsiagaan.

BNPB. (2017). Data Bencana Tahun 2017. Pusat Data, Informasi dan Humas Badan Nasional Penanggulangan Bencana. ISBN : 978 - 602 - 5693 - 04 - 5

Corominas, J., & Moya, J. (1996). Historical landslides in the Eastern Pyrenees and their relation to rainy events. In: Landslides (Chacon J, Irigaray C, Fernandez T, eds). Rotterdam: A.A. Balkema, 125“132

Crosta, G. B., & Frattini, P. (2003). Distributed modelling of shallow landslides triggered by intense rainfall. Nat. Hazard Earth. Sys. Sci., 3(1“2), 81“93

Gairola, R. M., Varma, A. K., Prakash, S., & Mahesh, C. (2013). Development of Rainfall Estimation Algorithms for Monitoring Rainfall Events over India Using KALPANA-IR Measurements on Various Temporal and Spatial Scales. J. Chem. Inf. Model, 53, 1689“1699.

Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2007). Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys., 98, 239“267

Hadmoko, D. S., Lavigne, F., & Sartohadi, J. (2017). Spatio-Temporal Distribution of Landslides in Java and the Triggering Factors. Forum Geogr., 31(1). doi.org/10.23917/forgeo.v31i1.3790

Hikmah, N. (2016). Studi Perbandingan Pemetaan Risiko Bencana Longsor Berbasis Pendekatan Normatif Dan Pendekatan Kuantitatif Di Kabupaten Garut. Thesis. Institut Pertanian Bogor

Huang, R. (2014). Engineering Geology for Society and Territory. Eng. Geol. Soc. Territ., 8(2), 13“33. https://doi.org/10.1007/978-3-319-09408-3

Kushardono, D. (2012). Kajian satelit penginderaan jauh cuaca generasi baru Himawari 8 dan 9. Inderaja, III(5), 41“49

Ma, Z., Maddy, E. S., Zhang, B., Zhu, T., & Boukabara, S.A. (2017). Impact assessment of Himawari-8 AHI data assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Ocean. Technol., 34, 797“815. doi.org/10.1175/JTECH-D-16-0136.1

Marchese, F., Falconieri, A., Pergola, N., & Tramutoli, V. (2018). Monitoring the Agung (Indonesia) ash plume of November 2017 by means of infrared Himawari 8 data. Remote Sens. 10. doi.org/10.3390/rs10060919

Marfai, M. A., Hadmoko, D. S., Sartohadi, J., Singh, L.P., Dewi, A., King, L., & Mardiatno, D. (2008). Natural hazards in Central Java Province, Indonesia: an overview. Environ. Geol., 56, 335“351. doi.org/10.1007/s00254-007-1169-9

McColl, S. (2015). Landslide causes and triggers. In: Davies, T. (Ed.), Landslide Hazards, Risks, and Disasters. Elsevier.

Na, L., Zhang, J., Bao, Y., Bao, Y., Na, R., Tong, S., & Si, A. (2018). Himawari-8 satellite based dynamic monitoring of grassland fire in China-Mongolia border regions. Sensors (Switzerland), 18. doi.org/10.3390/s18010276

Nanda Alfuadi1, N., & Wandala, A. (2016)., Comparative Test Of Several Rainfall Estimation Methods Using Himawari-8 Data. International Journal of Remote Sensing and Earth Sciences, 13(2), 95 “ 104

Okumura, H., Sekiyama, T.., Khatri, P., Ogi, A., Nagao, T.M., Uchino, O., Murakami, H., Irie, H., Kikuchi, M., Yumimoto, K., Maki, T., Morino, I., Arai, K., & Tanaka, T.Y. (2016). Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett., 43, 5886“5894. doi.org/10.1002/2016gl069298

Richard M. Iverson, R. M. (2000). Landslide triggering by rain infiltration. Water Resources Research, 36(7), 1897-1910

Shang, H., Letu, H., Peng, Z., & Wang, Z. (2018). Development of a daytime cloud and aerosol loadings detection algorithm for Himawari-8 satellite measurements over DESERT. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 42, 61“66. doi.org/10.5194/isprs-archives-XLII-3-W5-61-2018

Sitorus, S. R. P., & Pravitasari, A. E. (2017). Land Degradation and Landslide in Indonesia. Sumatra Journal of Disaster, Geography and Geography Education, 1, 61“71.

Wickramasinghe, C.H., Jones, S., Reinke, K., & Wallace, L. (2016). Development of a multi-spatial resolution approach to the surveillance of active fire lines using Himawari-8. Remote Sens., 8, 1“13. doi.org/10.3390/rs8110932

Xu, C., Ma, S., Tan, Z., Xie, C., Toda, S., & Huang, X. (2016). Landslides triggered by the 2016 Mj 7.3 Kumamoto, Japan, earthquake. Landslides, 15(3), 551“564

Zhang, J., van Westen, C. J., Tanyas, H., Mavrouli, O., Ge, Y., Bajrachary, S., Gurung, D. R., Dhital, M. R., & Khanal N. R. (2019). How size and trigger matter: analyzing rainfall- and earthquake-triggered landslide inventories and their causal relation in the Koshi River basin, central Himalaya. Nat. Hazards Earth Syst. Sci., 19, 1789“1805

Zhao, C., & Lu, Z. (2018). Remote Sensing of Landslides”A Review. Remote Sens., 10, 279

Downloads

Published

2021-02-15

How to Cite

Nugroho, J. T., Haryani, N. S., Yulianto, F., & Ardha, M. (2021). RAINFALL THRESHOLDS FOR LANDSLIDE IN GARUT REGENCY, WEST JAVA USING HIMAWARI-8 DATA. JURNAL GEOGRAFI, 13(1), 37–46. https://doi.org/10.24114/jg.v13i1.18049