Analisis Dampak Pembangunan Infrastruktur Bandara Internasional Jawa Barat Terhadap Alih Fungsi Lahan Pertanian Melalui Citra Satelit Resolusi Tinggi

Authors

DOI:

https://doi.org/10.24114/jg.v11i2.13470

Abstract

Pembangunan infrastruktur seperti bandara akan menyebabkan perubahan penggunaan lahan pada area tersebut dan sekitarnya. Perubahan ini, terutama jika wilayah bandara berada pada wilayah yang dominan dengan lahan pertanian maka akan berpotensi mengubah fungsi lahan pertanian tersebut menjadi lahan non pertanian. Pembangunan infrastruktur bandara termasuk aksesnya akan mendorong pertumbuhan wilayah dan pertumbuhan ekonomi di wilayah tersebut. Tujuan penelitian ini adalah mendeteksi perubahan penggunaan lahan di wilayah Bandara Internasional Jawa Barat (BIJB) Kertajati khususnya alih fungsi lahan pertanian ke non pertanian. Metode yang diusulkan dalam penelitian ini adalah mengidentifikasi perubahan penggunaan lahan pada area kajian menggunakan data SPOT multitemporal dimana dilakukan klasifikasi perpaduan antara segmentasi objek secara digital menggunakan metode multiresolution segmentation dan penentuan kelas penggunaan lahan secara visual. Hasil penelitian menunjukkan bahwa telah terjadi penurunan luasan sejak 2013 hingga 2018 di wilayah kajian yaitu dari 5.822,80 ha pada tahun 2013 menjadi 5.347,30 ha selama kurun waktu 2013-2018. Kata kunci: penginderaan jauh, perubahan penggunaan lahan, pembangunan infrastrukturThe construction of infrastructure such as airport will cause changes in land use in the area and its surroundings. This change, especially if the airport area is in the dominant area with agricultural land or ricefield, will potentially change the function of the ricefield into non-agricultural land. The construction of airport infrastructure, including its access, will drive regional growth and economic growth in the region. The purpose of this research is to detect changes of land use in the West Java International Airport (BIJB) Kertajati region, West Java, especially the conversion of ricefield to non-agricultural land. The method proposed in this study is to identify changes of land use in the study area using multitemporal SPOT data where the hybrid classification is done with digital object segmentation method using multiresolution segmentation and the determination of land use classes with visual interpretation. The result shows that there had been a decrease in the area of ricefield from 5,822.80 hectares in 2013 became 5,347.30 hectares during the period 2013-2018.Keyword: remote sensing, land-use change, infrastructure development

References

Baatz, M., & Schäpe, A. (2000). Multiresolution segmentation : an optimization approach for high quality multi-scale image segmentation. Angewandte Geographische Informationsverarbeitung XII. Beiträge Zum AGIT-Symposium Salzburg 2000, 12“23.

Bacior, S., & Prus, B. (2018). Infrastructure development and its influence on agricultural land and regional sustainable development. Ecological Informatics, 44(February), 82“93. https://doi.org/10.1016/j.ecoinf.2018.02.001

Banzhaf, E., Kollai, H., & Kindler, A. (2018). Mapping urban grey and green structures for liveable cities using a 3D enhanced OBIA approach and vital statistics. Geocarto International (Vol. 0). Taylor & Francis. https://doi.org/10.1080/10106049.2018.1524514

Ben-Yosef, G., Assif, L., & Ullman, S. (2018). Full interpretation of minimal images. Cognition, 171(November 2017), 65“84. https://doi.org/10.1016/j.cognition.2017.10.006

Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3“4), 239“258. https://doi.org/10.1016/j.isprsjprs.2003.10.002

Blaschke, T., Hay, G. J., Kelly, M., Lang, S., Hofmann, P., Addink, E., ¦ Tiede, D. (2014). Geographic Object-Based Image Analysis - Towards a new paradigm. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180“191. https://doi.org/10.1016/j.isprsjprs.2013.09.014

Carbonera, J. L., Abel, M., & Scherer, C. M. S. (2015). Visual interpretation of events in petroleum exploration: An approach supported by well-founded ontologies. Expert Systems with Applications, 42(5), 2749“2763. https://doi.org/10.1016/j.eswa.2014.11.021

Cegielska, K., Noszczyk, T., Kukulska, A., Szylar, M., Hernik, J., Dixon-Gough, R., ¦ Filepné Kovács, K. (2018). Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland. Land Use Policy, 78(April), 1“18. https://doi.org/10.1016/j.landusepol.2018.06.017

Chen, G., Thill, J. C., Anantsuksomsri, S., Tontisirin, N., & Tao, R. (2018). Stand age estimation of rubber (Hevea brasiliensis) plantations using an integrated pixel- and object-based tree growth model and annual Landsat time series. ISPRS Journal of Photogrammetry and Remote Sensing, 144(May), 94“104. https://doi.org/10.1016/j.isprsjprs.2018.07.003

Chen, G., Weng, Q., Hay, G. J., & He, Y. (2018). Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GIScience and Remote Sensing, 55(2), 159“182. https://doi.org/10.1080/15481603.2018.1426092

de Freitas, M. W. D., Muñoz, P., dos Santos, J. R., & Alves, D. S. (2018). Land use and cover change modelling and scenarios in the Upper Uruguay Basin (Brazil). Ecological Modelling, 384(December 2017), 128“144. https://doi.org/10.1016/j.ecolmodel.2018.06.009

Definiens. (2012). Developer XD 2.0.4 Reference Book. Retrieved from www.definiens.com

Ellis, E. A., & Mathews, A. J. (2018). Object-based delineation of urban tree canopy: assessing change in Oklahoma City, 2006“2013. Computers, Environment and Urban Systems, 73(May 2018), 85“94. https://doi.org/10.1016/j.compenvurbsys.2018.08.006

Estoque, R. C., & Murayama, Y. (2015). Intensity and spatial pattern of urban land changes in the megacities of Southeast Asia. Land Use Policy, 48, 213“222. https://doi.org/10.1016/j.landusepol.2015.05.017

Gibson, L., Münch, Z., Palmer, A., & Mantel, S. (2018). Future land cover change scenarios in South African grasslands “ implications of altered biophysical drivers on land management. Heliyon, 4(7). https://doi.org/10.1016/j.heliyon.2018.e00693

Haque, M. I., & Basak, R. (2017). Land cover change detection using GIS and remote sensing techniques: A spatio-temporal study on Tanguar Haor, Sunamganj, Bangladesh. Egyptian Journal of Remote Sensing and Space Science, 20(2), 251“263. https://doi.org/10.1016/j.ejrs.2016.12.003

Hegazy, I. R., & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. International Journal of Sustainable Built Environment, 4(1), 117“124. https://doi.org/10.1016/j.ijsbe.2015.02.005

Hermawan, H. (2017). Pengembangan Destinasi Wisata Pada Tingkat Tapak Lahan Dengan Pendekatan Analisis Swot. Pariwisata, IV(2), 64“74. Retrieved from http://ejournal.bsi.ac.id/ejurnal/index.php/jp

Hidayat, F., Rudiastuti, A. W., & Purwono, N. (2018). GEOBIA an ( Geographic ) Object-Based Image Analysis for coastal mapping in Indonesia : A Review. IOP Conf. Series: Earth and Environmental Science, 162.

Indah, N. F., & Ma™rif, S. (2014). Pengaruh keberadaan Bandara Internasional Kualanamu terhadap perubahan sosial ekonomi dan perubahan fisik kawasan sekitarnya. Teknik PWK, 3(1), 82“95. Retrieved from https://ejournal3.undip.ac.id/index.php/pwk/article/view/4393

Janík, T., & Romportl, D. (2018). Recent land cover change after the Kyrill windstorm in the Å umava NP. Applied Geography, 97(June 2017), 196“211. https://doi.org/10.1016/j.apgeog.2018.06.006

Kefalas, G., Poirazidis, K., Xofis, P., & Kalogirou, S. (2018). Mapping and understanding the dynamics of landscape changes on heterogeneous mediterranean Islands with the use of OBIA: The case of Ionian Region, Greece. Sustainability (Switzerland), 10(9). https://doi.org/10.3390/su10092986

Kim, J. Y., & Han, J. H. (2016). Straw effects of new highway construction on local population and employment growth. Habitat International, 53, 123“132. https://doi.org/10.1016/j.habitatint.2015.11.009

Kumari, A., & Sharma, A. K. (2017). Physical & social infrastructure in India & its relationship with economic development. World Development Perspectives, 5, 30“33. https://doi.org/10.1016/j.wdp.2017.02.005

Kushardono, D. (2012). Simulasi pertumbuhan lahan terbangun berbasis data satelit penginderaan jauh multitemporal pada studi kasus Jakarta dan sekitarnya.

Li, X., & Shao, G. (2013). Object-based urban vegetation mapping with high-resolution aerial photography as a single data source. International Journal of Remote Sensing, 34(3), 771“789. https://doi.org/10.1080/01431161.2012.714508

Manalu, R. J. (2014). Deteksi perubahan penutup lahan berdasarkan analisis visual dari citra Landsat TM Studi Kasus: Lemah Abang Bekasi. Pemanfaatan Citra Penginderaan Jauh Untuk Sumber Daya Wilayah Darat, 95“104.

Maparu, T. S., & Mazumder, T. N. (2017). Transport infrastructure, economic development and urbanization in India (1990“2011): Is there any causal relationship? Transportation Research Part A: Policy and Practice, 100, 319“336. https://doi.org/10.1016/j.tra.2017.04.033

Maryaningsih, N., Hermansyah, O., & Savitri, M. (2014). PENGARUH INFRASTRUKTUR TERHADAP PERTUMBUHAN EKONOMI INDONESIA. Buletin Ekonomi Moneter Dan Perbankan, 17(1), 62“98. https://doi.org/10.21098/bemp.v17i1.44

Mazur, A. K., WÃ¥hlin, A. K., & Krężel, A. (2017). An object-based SAR image iceberg detection algorithm applied to the Amundsen Sea. Remote Sensing of Environment, 189, 67“83. https://doi.org/10.1016/j.rse.2016.11.013

Mui, A., He, Y., & Weng, Q. (2015). An object-based approach to delineate wetlands across landscapes of varied disturbance with high spatial resolution satellite imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 109, 30“46. https://doi.org/10.1016/j.isprsjprs.2015.08.005

Pandit, A., Minné, E. A., Li, F., Brown, H., Jeong, H., James, J. A. C., ¦ Crittenden, J. C. (2017). Infrastructure ecology: an evolving paradigm for sustainable urban development. Journal of Cleaner Production, 163, S19“S27. https://doi.org/10.1016/j.jclepro.2015.09.010

Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Feizizadeh, B. (2017). Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Science of the Total Environment, 579, 913“927. https://doi.org/10.1016/j.scitotenv.2016.10.176

Sari, N. M., & Kushardono, D. (2016). Quality analysis of single tree object with OBIA and vegetation index from LAPAN Surveillance Aircraft multispectral data in urban area. Geoplanning: Journal of Geomatics and Planning, 3(2), 93“106. https://doi.org/10.14710/geoplanning.3.2.93-106

Setiawan, M. I., Sukoco, A., Purworusmiadi, T., Wajdi, M. B. N., & Kurniasih, N. (2017). Pengembangan Bandara Udara, dampaknya dalam Peningkatan Wisata Halal dan Wisata Muslim di Indonesia. At-Tahdzib: Jurnal Studi Islam Dan Muamalah, 5(2), 125“147. Retrieved from http://ejournal.kopertais4.or.id/mataraman/index.php/tahdzib/article/view/3252

Sukwika, T. (2018). Peran Pembangunan Infrastruktur terhadap Ketimpangan Ekonomi Antarwilayah di Indonesia, 6, 115“130. https://doi.org/10.14710/jwl.6.2.115-130.

Tallapragada, V. V. S., Reddy, D. M., Kiran, P. S., & Reddy, D. V. (2015). A novel medical image segmentation and classification using combined feature set and decision tree classifier. IJRET: International Journal of Research in Engineering and Technology, 04(09), 83“86. https://doi.org/10.1097/01.NUR.0000325379.07342.75

Tan, R., Liu, K., & Lin, B. (2018). Transportation infrastructure development and China™s energy intensive industries - A road development perspective. Energy, 149, 587“596. https://doi.org/10.1016/j.energy.2018.02.041

Toure, S. I., Stow, D. A., Shih, H. chien, Weeks, J., & Lopez-Carr, D. (2018). Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sensing of Environment, 210(March), 259“268. https://doi.org/10.1016/j.rse.2018.03.023

Vogels, M. F. A., de Jong, S. M., Sterk, G., & Addink, E. A. (2017). Agricultural cropland mapping using black-and-white aerial photography, Object-Based Image Analysis and Random Forests. International Journal of Applied Earth Observation and Geoinformation, 54, 114“123. https://doi.org/10.1016/j.jag.2016.09.003

Watmough, G. R., Palm, C. A., & Sullivan, C. (2017). An operational framework for object-based land use classification of heterogeneous rural landscapes. International Journal of Applied Earth Observation and Geoinformation, 54, 134“144. https://doi.org/10.1016/j.jag.2016.09.012

Whiteside, T. G., & Bartolo, R. E. (2015). Use of WorldView-2 time series to establish a wetland monitoring program for potential offsite impacts of mine site rehabilitation. International Journal of Applied Earth Observation and Geoinformation, 42, 24“37. https://doi.org/10.1016/j.jag.2015.05.002

Yang, B., Zeng, F., Yuan, M., Li, D., Qiu, Y., & Li, J. (2011). Measurement of Dongting Lake area based on visual interpretation of polders. Procedia Environmental Sciences, 10(PART C), 2684“2689. https://doi.org/10.1016/j.proenv.2011.09.417

Yuliana, D., & Subekti, S. (2016). Strategi pengembangan Bandara Soekarno Hatta dalam mendukung destinasi pariwisata prioritas Tanjung Lesung - Pandeglang dan sekitarnya. Jurnal Transportasi Multimoda, 14(4), 177“192.

Zhao, T., & Wang, J. (2014). Use of lidar-derived NDTI and intensity for rule-based object-oriented extraction of building footprints. International Journal of Remote Sensing, 35(2), 578“597. https://doi.org/10.1080/01431161.2013.871394

Zulfikar, W., & Rukayat, Y. (2017). Dampak sosial, ekonomi dan politis dalam pembangunan Bandar Udara Kertajati di Kabupaten Majalengka. Sosiohumaniora, 19(3), 225“232.

Downloads

Published

2019-08-03

How to Cite

Sari, N. M., & Kushardono, D. (2019). Analisis Dampak Pembangunan Infrastruktur Bandara Internasional Jawa Barat Terhadap Alih Fungsi Lahan Pertanian Melalui Citra Satelit Resolusi Tinggi. JURNAL GEOGRAFI, 11(2), 146–162. https://doi.org/10.24114/jg.v11i2.13470