The effect of comonomer styrene on the grafting of maleic anhydride onto cyclized natural rubber
DOI:
https://doi.org/10.24114/jpkim.v16i2.56906Keywords:
Cyclized natural rubber, Grafting, Maleic anhydride, StyreneAbstract
The grafting degree of maleic anhydride onto cyclized natural rubber is generally still low. This is due to the lack of electron density of the maleic anhydride double bond so that its reactivity is low. This research aims to increase the grafting degree by the addition of a styrene comonomer. Grafting of maleic anhydride onto cyclized natural rubber had been performed in an internal mixer 150 oC and 80 rpm in the presence of styrene comonomer. The grafted product was analyzed by Fourier Transform Infra-Red to determine the presence of maleic groups and Differential Scanning Calorimetry and Thermalgravimetric to investigate its thermal properties. Fourier Transform Infra-Red spectra confirmed that the grafted product of maleic anhydride onto Cyclized Natural Rubber formed with absorption at 1700 cm-1, 1850 cm-1 and 700 cm-1. The higher concentration of maleic anhydride reacted the higher of grafting degree of maleic anhydride with the high intensity of absorption at 1700 cm-1 and 1850 cm-1. Differential Scanning Calorimetry spectra showed that the glass transition temperature of maleated Cyclized Natural Rubber products increases, the more comonomer are added the higher the glass transition temperature of the product. Generally, based on the Thermalgravimetric spectra, the thermal properties of grafted product does not change significantly compared to the blank sample.References
Aritonang, B., Tamrin, Wirjosentono, B., & Eddiyanto. (2020). Grafting copolymer cylic natural rubber with oleic acid using dicumyl peroxide as initiator. AIP Conference Proceedings, 2267(September). https://doi.org/10.1063/5.0025153
Coudane, J., Van Den Berghe, H., Mouton, J., Garric, X., & Nottelet, B. (2022). Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules, 27(13). https://doi.org/10.3390/molecules27134135
De Roover, B., Sclavons, M., Carlier, V., Devaux, J., Legras, R., & Momtaz, A. (1995). Molecular characterization of maleic anhydridefunctionalized polypropylene. Journal of Polymer Science Part A: Polymer Chemistry, 33(5), 829“842. https://doi.org/10.1002/pola.1995.080330509
Dorscht, B. M., & Tzoganakis, C. (2002). Reactive extrusion of polypropylene with supercritical carbon dioxide: Free radical grafting of Maleic anhydride. Journal of Applied Polymer Science, 87(7), 1116“1122. https://doi.org/10.1002/app.11561
Eddiyanto, E., Sipayung, M., & Gea, S. (2024). Graft copolymerisation of maleic anhydride onto natural rubber (SIR-20): Melt processing and characterisation. AIP Conference Proceedings, 3026(1). https://doi.org/10.1063/5.0200711
Fatimah, A. R. H., Supri, A. G., & Firuz, Z. (2015). The Effect of Polyethylene-grafted-Maleic Anhydride as Compatibilizer on Properties of Recycled High Density Polyethylene/Ethylene Vinyl Acetate/Taro Powder (Colocasia esculenta) Composites. Journal of Advanced Research in Materials Science, 10(1), 26-39.
Ferrero, F. (2005). Solvent effect in grafting of liquid polybutadienes with maleic anhydride. Progress in Organic Coatings, 53(1), 50“55. https://doi.org/10.1016/j.porgcoat.2004.12.009
Gaylord, N. G., Mehta, R., Mohan, D. R., & Kumar, V. (1992). Maleation of linear lowdensity polyethylene by reactive processing. Journal of Applied Polymer Science, 44(11), 1941“1949. https://doi.org/10.1002/app.1992.070441109
Hayeemasae, N., Sensem, Z., Sahakaro, K., & Ismail, H. (2020). Maleated natural rubber/halloysite nanotubes composites. Processes, 8(3). https://doi.org/10.3390/pr8030286
Heinen, W., van Duin, M., Rosenmöller, C. H., Wenzel, C. B., De Groot, H. J. M., & Lugtenburg, J. (1998). 13C NMR Study of the grafting of 13C labeled maleic anhydride onto PE, PP and EPM. Macromolecular Symposia, 129(1), 119“125. https://doi.org/10.1002/masy.19981290111
Krump, H., Alexy, P., & Luyt, A. S. (2005). Preparation of a maleated Fischer-Tropsch paraffin wax and FTIR analysis of grafted maleic anhydride. Polymer Testing, 24(2), 129“135. https://doi.org/10.1016/j.polymertesting.2004.09.011
Mahendra, I. P., Wirjosentono, B., Tamrin, Ismail, H., Mendez, J. A., & Causin, V. (2019). The influence of maleic anhydride-grafted polymers as compatibilizer on the properties of polypropylene and cyclic natural rubber blends. Journal of Polymer Research, 26(9). https://doi.org/10.1007/s10965-019-1878-2
Mirzataheri, M. (2000). The Cyclization of Natural Rubber. Iranian Journal of Chemistry and Chemical Engineering, 19(2), 91“96. https://doi.org/10.1098/rspa.1963.0094
Moad, G. (2002). The synthesis of polyolefin graft copolymers by reactive extrusion. Progress in Polymer Science, 24(10), 1527“1528. https://doi.org/10.1016/s0079-6700(00)00004-6
Nitiyah, K. K., Musa, L., Rasidi, M. S. M., Rahim, S. Z. A., Rahman, R., Azmi, A. A., & Masa, A. H. (2024). The grafting of maleic anhydride onto PLA and ENR to form PLA-graft-ENR for PLA/ENR blend. AIP Conference Proceedings, 2883(1). https://doi.org/10.1063/5.0204605
Ritonga, A.H., Aritonang, B., & Siahaan, M.A. (2019). Modification of cyclic natural rubber with comonomer of anhydrtaes maleic and oleic acid through grafting method with reflux technique using benzoyl peroxide initiator. Jurnal Kimia Mulawarman, 17, 37“44
Riyajan, S., & Sakdapipanich, J. T. (2006). Cationic cyclization of deproteinized natural rubber latex using sulfuric acid. KGK Kautschuk Gummi Kunststoffe, 59(3), 104“109.
Saelao, J., & Phinyocheep, P. (2005). Influence of styrene on grafting efficiency of maleic anhydride onto natural rubber. Journal of Applied Polymer Science, 95(1), 28“38. https://doi.org/10.1002/app.20810
Siregar, M. S., Ardilla, D., & Nasution, A. S. (2019). Grafting Of Maleic Anhydride onto Cyclized Natural Rubber In The Melt Phase: The Effect of Maleic Anhydride Consentrations on the Spesific Weight and Total Acid. Proceeding International Seminar on Islamic Studies, 1(1), 10“15. https://doi.org/10.1088/1742-6596/1764/1/012200
Siregar, M. S., Astuti, R. P., Fuadi, M., Ardilla, D., Masyura, M. D., Nasution, A., & Eddiyanto. (2021). Grafting of maleic anhydride onto cyclized natural rubber: The presence of divinyl benzene to increase the grafting degree. Jurnal Riset Teknologi Industri, 15(2), 222“230.
Siregar, M. S., Fitri, D. A., Nusa, M. I., Ardilla, D., M.D, M., Nasution, A., & Eddiyanto, E. (2022). Study on the thermal properties of the grafted product of maleic anhydride onto clylized natural rubber by using thermogravimetric method. Jurnal Pendidikan Kimia, 14(1), 1“8. https://doi.org/10.24114/jpkim.v14i1.31799
Siregar, M. S., Thamrin, Basuki, Eddiyanto, & Mendez, J. A. (2014). Grafting of maleic anhydride onto cyclized natural rubber by reactive processing : The effect of maleic anhydride concentrations. Chemistry and Material Research, 6(11), 15“21.
Sitanggang, B. C., & Eddyanto, E. (2019). Functionalization of cyclic natural rubber grafted maleic anhydride (cnr-g-ma) with variation of ma concentration, inisiator and reaction time. Jurnal Pendidikan Kimia, 11(3), 87-94. https://doi.org/10.24114/jpkim.v11i3.15736
Tanrattanakul, V., Jaratrotkamjorn, R., & Juliwanlee, W. (2020). Effect of maleic anhydride on mechanical properties and morphology of poly (lactic acid)/natural rubber blend. Songklanakarin Journal of Science & Technology, 42(3), 697-704.
Wongthong, P., Nakason, C., Pan, Q., Rempel, G. L., & Kiatkamjornwong, S. (2013). Modification of deproteinized natural rubber via grafting polymerization with maleic anhydride. European Polymer Journal, 49(12), 4035“4046. https://doi.org/10.1016/j.eurpolymj.2013.09.009
Yang, L., Zhang, F., Endo, T., & Hirotsu, T. (2002). Structural characterization of maleic anhydride grafted polyethylene by 13C NMR spectroscopy. Polymer, 43(8), 2591“2594. https://doi.org/10.1016/S0032-3861(01)00802-3
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Muhammad Said siregar

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors published in this journal agree to the following terms:
- The copyright of each article is retained by the author (s).
- The author grants the journal the first publication rights with the work simultaneously licensed under the Creative Commons Attribution License, allowing others to share the work with an acknowledgment of authorship and the initial publication in this journal.
- Authors may enter into separate additional contractual agreements for the non-exclusive distribution of published journal versions of the work (for example, posting them to institutional repositories or publishing them in a book), with acknowledgment of their initial publication in this journal.
- Authors are permitted and encouraged to post their work online (For example in the Institutional Repository or on their website) before and during the submission process, as this can lead to productive exchanges, as well as earlier and larger citations of published work.
Jurnal Pendidikan Kimia is licensed under a Creative Commons Attribution 4.0 International License