Fabrication of photocatalyst film based on TEMPO-oxidized cellulose nanofiber

Authors

  • Yusnaidar Yusnaidar Universitas Jambi, Jambi 36361, Indonesia
  • Wilda Syahri Universitas Jambi, Jambi 36361, Indonesia
  • Harizon Harizon Universitas Jambi, Jambi 36361, Indonesia
  • I Putu Mahendra Institut Teknologi Sumatera, Lampung 35365, Indonesia https://orcid.org/0000-0002-0805-4498

DOI:

https://doi.org/10.24114/jpkim.v15i1.44183

Abstract

The powerful performance of TiO2 and its doped as photocatalyst material initiated the finding of new technique that efficient and effective to degrade the organic pollutant, i.e., azo dyes. This study examined photocatalyst film's photoactivity, TEMPO-oxidized cellulose-containing N-TiO2 (TOC/N-TiO2), on the degradation of azo dyes. TEMPO-oxidized cellulose, which has a negative charge, was sequentially mixed and stirred in the suspension of TiO2 and doped TiO2. This experiment utilized several instruments to determine the physicochemical properties of the photocatalyst film. The UV-DRS and diffractogram data confirmed the anatase phase as the only phase found in N-TiO2, which has a lower bandgap value than the anatase TiO2. These data demonstrated the superior photocatalytic of TOC/ N-TiO2 against azo dyes.Keywords: Doped-TiO2; Film; Photocatalyst; TEMPO-oxidized cellulose nanofiber

Author Biographies

Yusnaidar Yusnaidar, Universitas Jambi, Jambi 36361, Indonesia

Chemistry Study Program, Faculty of Science and Technology

Wilda Syahri, Universitas Jambi, Jambi 36361, Indonesia

Chemistry Education Study Program, Faculty of Teacher Training and Education

Harizon Harizon, Universitas Jambi, Jambi 36361, Indonesia

Chemistry Education Study Program, Faculty of Teacher Training and Education,

I Putu Mahendra, Institut Teknologi Sumatera, Lampung 35365, Indonesia

Chemistry Study Program, Science Department

References

Al-Ahmed, Z. A., Hassan, A. A., El-Khouly, S. M., & El-Shafey, S. E. (2019). TEMPO-oxidized cellulose nanofibers/TiO2 nanocomposite as new adsorbent for brilliant blue dye removal. Polymer Bulletin, 77(12), 6213“6226. https://doi.org/10.1007/s00289-019-03068-4

Arularasu, M. V., Harb, M., & Sundaram, R. (2020). Synthesis and characterization of cellulose/TiO2 nanocomposite: Evaluation of in vitro antibacterial and in silico molecular docking studies. Carbohydrate Polymers, 249, 116868. https://doi.org/10.1016/j.carbpol.2020.116868

Aware, D. V., & Jadhav, S. S. (2016). Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol“gel method. Applied Nanoscience, 6(7), 965-972. https://doi.org/10.1007/s13204-015-0513-8

Chen, Y., Liu, H., Geng, B., Ru, J., Cheng, C., Zhao, Y., & Wang, L. (2017). A reusable surface-quaternized nanocellulose-based hybrid cryogel loaded with N-doped TiO2for self-integrated adsorption/photo-degradation of methyl orange dye. RSC Advances, 7(28), 17279“17288. https://doi.org/10.1039/c7ra00450h

El-Gendy, A., Abou-Zeid, R. E., Salama, A., Diab, M. A. H. A. R., & El-Sakhawy, M. (2017). TEMPO-oxidized cellulose nanofibers/polylactic acid/TiO2 as antibacterial bionanocomposite for active packaging. Egyptian Journal of Chemistry, 60(6), 1007-1014. https://doi.org/10.21608/ejchem.2017.1835.1153

Ezati, P., Tajik, H., & Moradi, M. (2019). Fabrication and characterization of alizarin colorimetric indicator based on cellulose-chitosan to monitor the freshness of minced beef. Sensors and Actuators B: Chemical, 285, 519-528. https://doi.org/10.1016/J.SNB.2019.01.089

Fischer, K., Gawel, A., Rosen, D., Krause, M., Abdul Latif, A., Griebel, J., ... & Schulze, A. (2017). Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis. Catalysts, 7(7), 209. https://doi.org/10.3390/catal7070209

Henry, A., Plumejeau, S., Heux, L., Louvain, N., Monconduit, L., Stievano, L., & Boury, B. (2015). Conversion of nanocellulose aerogel into TiO2 and TiO2@ C nano-thorns by direct anhydrous mineralization with TiCl4. Evaluation of electrochemical properties in Li batteries. ACS Applied Materials & Interfaces, 7(27), 14584-14592. https://doi.org/10.1021/acsami.5b00299

Huda, A., Putu Mahendra, I., Ichwani, R., Tri Handoko, C., Minh Ngoc, H., Yudono, B., ... & Gulo, F. (2019). High efficient visible-light activated photo catalytic semiconductor SnO2/Sn3O4 heterostructure in Direct Blue 71 (DB71) degradation. Rasayan Journal of Chemistry, 12(1), 308-318. https://doi.org/10.31788/RJC.2019.1215084

Kale, B. M., Wiener, J., Militky, J., Rwawiire, S., Mishra, R., Jacob, K. I., & Wang, Y. (2016). Coating of cellulose-TiO2 nanoparticles on cotton fabric for durable photocatalytic self-cleaning and stiffness. Carbohydrate polymers, 150, 107-113. https://doi.org/10.1016/j.carbpol.2016.05.006

Mahendra, I. P., Wirjosentono, B., Ismail, H., & Mendez, J. A. (2019a). Thermal and morphology properties of cellulose nanofiber from TEMPO-oxidized lower part of empty fruit bunches (LEFB). Open Chemistry, 17(1), 526-536. https://doi.org/10.1515/chem-2019-0063

Mahendra, I. P., Huda, A., Ngoc, H. M., Nghia, P. T., Tamrin, T., & Wirjosentono, B. (2019b). Investigation of TiO2 doped with nitrogen and vanadium using hydrothermal/Sol-Gel method and its application for dyes photodegradation. Arab Journal of Basic and Applied Sciences, 26(1), 242-253. https://doi.org/10.1080/25765299.2019.1610209

Mathews, N. R., Cortes Jacome, M. A., Angeles-Chavez, C., & Toledo Antonio, J. A. (2015). Fe doped TiO 2 powder synthesized by sol gel method: structural and photocatalytic characterization. Journal of Materials Science: Materials in Electronics, 26, 5574-5584. https://doi.org/10.1007/s10854-014-2294-3

Mekprasart, W., & Pecharapa, W. (2011). Synthesis and characterization of nitrogen-doped TiO2and its photocatalytic activity enhancement under visible light. Energy Procedia, 9, pp. 509“514. https://doi.org/10.1016/j.egypro.2011.09.058

Morawski, A. W., Kusiak-Nejman, E., Przepiórski, J., Kordala, R., & Pernak, J. (2013). Cellulose-TiO 2 nanocomposite with enhanced UV“Vis light absorption. Cellulose, 20, 1293-1300. https://doi.org/10.1007/s10570-013-9906-6

Nolan, N. T., Synnott, D. W., Seery, M. K., Hinder, S. J., Van Wassenhoven, A., & Pillai, S. C. (2012). Effect of N-doping on the photocatalytic activity of sol“gel TiO2. Journal of Hazardous Materials, 211, 88-94. https://doi.org/10.1016/j.jhazmat.2011.08.074

Ramchiary, A., & Samdarshi, S.K. (2015). Hydrogenation based disorder-engineered visible active N-doped mixed phase titania. Solar Energy Materials and Solar Cells, 134, pp. 381“388. https://doi.org/10.1016/j.solmat.2014.12.031

Rohaizu, R., & Wanrosli, W.D. (2017). Sono-assisted TEMPO oxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose. Ultrasonics Sonochemistry, 34, pp. 631“639. https://doi.org/10.1016/j.ultsonch.2016.06.040

Tsega, M., & Dejene, F.B. (2017). Influence of acidic pH on the formulation of TiO 2 nanocrystalline powders with enhanced photoluminescence property. Heliyon, 3(2), p. e00246. https://doi.org/10.1016/j.heliyon.2017.e00246

Vatansever, E., Arslan, D., & Nofar, M. (2019). Polylactide cellulose-based nanocomposites. International Journal of Biological Macromolecules, 137, pp. 912“938. https://doi.org/10.1016/J.IJBIOMAC.2019.06.205

Wang, W. K., Chen, J. J., Zhang, X., Huang, Y. X., Li, W. W., & Yu, H. Q. (2016). Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Scientific Reports, 6(1), 20491. https://doi.org/10.1038/srep20491

Wang, Y., Feng, C., Zhang, M., Yang, J., & Zhang, Z. (2010). Enhanced visible light photocatalytic activity of N-doped TiO2 in relation to single-electron-trapped oxygen vacancy and doped-nitrogen. Applied Catalysis B: Environmental, 100(1-2), 84-90. https://doi.org/10.1016/j.apcatb.2010.07.015

Downloads

Published

2023-04-22

Issue

Section

Articles