PELABELAN L(2,1) PADA GRAF SIERPIŃSKI S(n,k)
DOI:
https://doi.org/10.24114/jmk.v3i2.8805Abstract
AbstrakPelabelan L(2,1) pada sebuah graf G adalah fungsi f dari himpunan verteks V(G) ke himpunan semua bilangan non-negatif sehingga |f(u)-f(w)| ≥ 2 jika d(u,w) = 1 dan |f(u)-|f(w)| ≥ 1 jika d(u,w) = 2. Bilangan pelabelan L(2,1) dari sebuah graf G adalah bulangan k terkecil sehingga G memiliki pelabelan L(2,1) dengan max{f(v) : v ϵ V(G)} = k. Graf Sierpiński merupakan salah satu bentuk graf khusus perluasan dari graf lengkap. Pada penelitian ini ditunjukkan pelabelan pada graf Sierpiński dengan menggunakan algoritma Chang-Kuo dan diperoleh nilai L(2,1){S(n,2)} = 4 dan nilai L(2,1){S(n,3)} = 6 untuk n ≥ 2, dengan L(2,1){G} adalah bilangan maksimum terkecil pelabelan L(2,1) dari sebuah graf G.Kata kunci: Pelabelan L(2,1), graf Sierpiński, nilai L(2,1){S(n,k)}AbstractAn L(2,1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that f(u)-f(w)| ≥ 2 if d(u,w) = 1 and |f(u)-|f(w)| ≥ 1 if d(u,w) = 2. The L(2,1)-labeling number of a graph G is the smallest number k such that G has an L(2,1)-labeling number with max{f(v) : v ϵ V(G)} = k. Sierpiński graph is one of generalization of complete graphs. In this paper, we show the (2,1)-labeling of Sierpiński graph by using Chang-Kuo algorithm and show that L(2,1){S(n,2)} = 4 and nilai L(2,1){S(n,3)} = 6 for n ≥ 2, when L(2,1){G} is a smallest maximum number of L(2,1)-labeling of a graph G.Keywords: L(2,1)-labeling, Sierpiński graph, L(2,1){S(n,k)}-valueDownloads
Published
2017-08-05
Issue
Section
Articles
License
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).