PELABELAN TOTAL TITIK AJAIB PADA GRAF PETERSEN YANG DIPERUMUM
DOI:
https://doi.org/10.24114/jmk.v1i3.8666Abstract
ABSTRAKMisalkan G adalah sebuah graf dengan himpunan titik ( ) dan himpunan sisi ( ). Suatu pelabelan total titik ajaib (vertex-magic total labeling) pada graf ( ) adalah pemetaan bijektif dari ke himpunan bilangan integer sedemikian sehingga terdapat bilangan bulat positif yang memenuhi ( ) ( ) untuk setiap . Selanjutnya disebut konstanta ajaib pada G dan G disebut graf total titik ajaib. Hasil kajian menyatakan bahwa untuk graf Petersen ( ) memiliki bilangan konstanta ajaib untuk Teorema 4.1.1(a) dan untuk Teorema 4.1.1(b), untuk graf Petersen ( ) memiliki bilangan konstanta ajaib untuk Teorema4.2.1(a) dan Teorema4.2.1(b)dan untuk graf Petersen ( ) memiliki bilangan konstanta ajaib untuk Teorema 4.3.1(a) dan Teorema 4.3.1(b). Sehingga graf Petersen ( ) untuk dapat dikenakan pelabelan total titik ajaib.Kata kunci: Bilangan Konstanta Ajaib, Graf Petersen, Pelabelan Total Titik Ajaib.ABSTRACTSuppose G is a graph with set point ( ) and the set of the ( ). A total labeling magic point (vertex-magic total labeling) on a graph ( ) is a bijective mapping of to the set of integers such that there are integers positive that satisfies ( ) ( ) for every . Furthermore, so-called magic constant in graph G and G-called magic point total. Results of the study stated that for graph Petersen ( )has a magic constant number to Theorem 4.1.1 (a) and to Theorem 4.1.1 (b), to graph Petersen ( ) has a magic constant number to Theorem 4.2.1 (a) and Theorem 4.2.1 (b) and for the Petersen graph ( ) has a magic constant number to Theorem 4.3.1 (a) and Theorem 4.3.1 (b). So the graph Petersen ( ) for may be subject to labeling magic point total.Keywords: Magic Numbers Constants, Graph Petersen, Labeling Total Point Magic.Downloads
Published
2015-12-01
Issue
Section
Articles
License
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).