METODE JACKKNIFE DAN METODE BOOTSTRAP DALAM ESTIMASI KURTOSIS DAN SKEWNESS
DOI:
https://doi.org/10.24114/jmk.v8i2.34206Keywords:
ootstrap, Jackknife, Skewness, KurtosisAbstract
Hal yang harus diperhatikan untuk melakukan uji statistik sebagai proses analisis yaitu uji asumsi klasik, salah satunya adalah uji normalitas. Data yang tidak berdistribusi normal disebabkan terlalu banyak nilai-nilai ekstrim dalam satu set data sehingga menghasilkan distribusi skewness dan distribusi kurtosis. Untuk mengatasi masalah tersebut, dapat menggunakan metode bootstrap dan metode jackknife. Tujuan dari penelitian ini yaitu menentukan hasil estimasi dari metode bootstrap dan metode jackknife, serta menentukan estimator terbaik dengan cara membandingan nilai MSE kedua metode tersebut. Data yang digunakan dalam penelitian ini yaitu data kekuatan gempa bumi di Indonesia tahun 2020 dengan kekuatan magnitudo di atas 5. Berdasarkan simulasi dengan menggunakan bantuan program Matlab R2015a dilakukan resampling sebanyak 50, 100, 200, 500, dan 1000. Jika dilihat secara keseluruhan diperoleh nilai MSE terkecil yaitu dengan metode bootstrap. Dapat disimpulkan bahwa metode bootstrap merupakan metode yang efisien dibandingkan metode jackknife, hal ini didukung dengan kecilnya tingkat MSE yang dihasilkan. AbstractThe thing that must be considered in carrying out statistical tests as an analytical process is the classical assumption test, one of which is the normality test. Data that are not normally distributed are caused by too many extreme values in one data set, resulting in a skewness distribution and a kurtosis distribution. To solve this problem, you can use the bootstrap method and the jackknife method. The purpose of this study is to determine the estimation results from the bootstrap method and the jackknife method, and to determine the best estimator by comparing the MSE values of the two methods. The data used in this study is data on the strength of the earthquake in Indonesia in 2020 with a magnitude above 5. Based on the simulation using the help of the Matlab R2015a program, resampling of 50, 100, 200, 500, and 1000 was obtained. The smallest MSE is the bootstrap method. It can be concluded that the bootstrap method is an efficient method compared to the jackknife method, this is supported by the small level of MSE generated.References
Jerome, G. dan B. M. Golam Kibria, (2018): Inference about the Population Kurtosis with Confidence: Parametric and Bootstrap Approaches, International Journal of Statistics in Medical Research, 7(3), 77“87.
Tu, D. dan L. Zhang, (1992): On The Estimation of Skewness of a Statistic Using The Jackknife and The Bootstrap, 33, 39“56
Wackerly, Dennis D., William M. dan Richard L. S., (1981): Mathematical Statistics with Applications, sevent edition, Duxbury Press, Boston.
Solimun, A. A. R. F. dan N., (2017): Metode Statistika Multivariat: Pemodelan Persamaan structural(SEM) perndekatan WarpPLS, UB Press, Malang.
Ma™unah, S., Scolastika M. dan Sugiman, (2017): Estimasi Skewness (Kemiringan) Dengan Menggunakan Metode Bootstrap Dan Metode Jackknife, 6(2), 144“152.
Schemper, M., (1987): Nonparametric Estimation of Variance, Skewness and Kurtosis of The Distribution of a Statistic by Jackknife and Bootstrap Techniques, Statistica Neerlandica, 41, 59“64.
DiCiccio, Thomas dan Efron Bradley, (1996): Bootstrap Confidence Intervals, Statistical Science, 11, 189“212.
Hafid, H., Anisa dan Islamiyati A., (2015): Interval Kepercayaan Skewness dan Kurtosis Menggunakan Bootstrap pada Data Kekuatan
Gempa Bumi, 1“9.
Efron, B. dan Tibshirani R. J., (1993): An Introduction to the Bootstrap, Chapman and Hall/CRC, New York.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).