PENDUGA PARAMETER MODEL REGRESI LINIER SEDERHANA HADIRNYA HETEROSKEDASITAS DAN PENCILAN DENGAN METODE ROBUST WILD BOOTSTRAP
DOI:
https://doi.org/10.24114/jmk.v7i3.32478Keywords:
Penduga parameter, Heteroskedasitas (Heteroskedastik), Pencilan (Outliers), Efesiensi, OLS, Bootstrap klasik, Robust Wild BootstrapAbstract
Ordinary Least Square (OLS) merupakan suatu metode yang biasanya digunakan untuk mengestimasi parameter sebuah model regresi linier. Namun, ketika suatu data memiliki heteroskedastisitas dan pencilan dalam model regresi akan menyebabkan metode OLS menghasilkan penduga parameter yang tidak efisien.Penelitian ini dilakukan bertujuan untuk menganalisis efesiensi penduga parameter regresi linier berganda hadirnya heteroskedastik dan pencilan dengan metode robust wild bootstrap. Metode robust wild bootstrap adalah salah satu metode yang digunakan untuk mengestimasi parameter model regresi dengan hadirnya heteroskedastik dan pencilan yang merupakan modifikasi dari metode wild bootstrap. Hasil analisis yang telah dilakukan menunjukkan bahwa metode robust wild bootstrap menghasilkan penduga parameter yang lebih efisien dibandingkan dengan penduga parameter OLS, yang mana nilai mean standard error pada metode robust wild bootstrap lebih kecil dibandingkan dengan metode OLS. Sehingga dapat disimpulkan bahwa metode ini merupakan metode yang sesuai untuk kemungkinan variansi residual yang heteroskedastik dan adanaya pencilan. Abstract- Ordinary Least Square (OLS) is a method that is usually used to estimate the parameters of a linear regression model. However, when a data has heteroscedasticity and outliers in the regression model, it will cause the OLS method to produce inefficient parameter estimators. The robust wild bootstrap method is one of the methods used to estimate the parameters of the regression model with the presence of heteroscedasticity and outliers which is a modification of the wild bootstrap method. The results of the analysis that have been carried out show that the robust wild bootstrap method produces more efficient parameter estimators than the OLS parameter estimator, in which the mean standard error of the robust wild bootstrap method is smaller than the OLS method. So it can be concluded that this method is an appropriate method for the possibility of heteroscedastic residual variance and the existence of outliersReferences
R. Kurniawan and B. Yuniarto, Analisis Regresi Dasar dan Penerapan dengan R. Jakarta, 2016.
R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability and Statistics for Engineers end Scientists. Boson: Prentice Hall, 2011.
M. Pasaribu, A. Jalil, and R. M. Lubis, œPenerapan Analisis Regresi Ridge pada Data Pasien Hipertensi di Rumah Sakit Umum Daerah Sidikalang, E-Jurnal Mat., vol. 1, no. 2, pp. 1“5, 2015.
X. Yan and X. G. Su, œLinear Regression Analysis Theory and Cumputing, USA: World Scientific, 2007, pp. 1“349.
D. N. Gujarati, Basic Econometrics. New York: The McGraw-Hill, 2007.
S. G. Markidakis, S. C. Wheelwright, and V. E. McGee, Metode dan Aplikasi Peramalan, 2nd ed. Jakarta: Erlangga, 1999.
D. N. Gujarati and D. C. Porter, Basic Econometrics, 5th ed. New York: McGraw-Hill/Irwin, 2008.
Sarwoko, Dasar-Dasar Ekonometrika. Yogyakarta: ANDI, 2016.
T. P. Ryan, Modern Regression Methods, 2nd ed., vol. 39, no. 4. Kanada: JhonWiley and Sons, Inc, 1997.
S. Weisberg, Applied Linear Regression Models, 3rd ed. Kanada: John Wiley and Sons, Inc, 2005.
C. Chen, œRobust Regression and Outlier Detection with the ROBUSTREG Procedure, SAS Inst. Inc., pp. 265“27, 2002.
N. M. M. ASTARI, N. L. P. SUCIPTAWATI, and I. K. G. SUKARSA, œPenerapan Metode Bootstrap Residual Dalam Mengatasi Bias Pada Penduga Parameter Analisis Regresi, E-Jurnal Mat., vol. 3, no. 4, pp. 130“137, 2014, doi: 10.24843/mtk.2014.v03.i04.p075.
B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. London: Chapman & Hall, 1993.
D. B. Rubin, œThe Bayesian Bootstrap, Ann. Stat., vol. 9, no. 1, pp. 130“134, 1981.
D. A. Freedman, œBootstrapping Regression Models, Ann. Stat., 1981, doi: 10.1214/aos/1176345638.
B. Efron, œThe Bootstrap and Modern Statistics, vol. 95, no. 452, pp. 1293“1296, 2014.
S. Rana, H. Midi, and A. H. M. R. Imon, œRobust wild bootstrap for stabilizing the variance of parameter estimates in heteroscedastic regression models in the presence of outliers, Math. Probl. Eng., pp. 1“15, 2012, doi: 10.1155/2012/730328.
L. J. Bain and M. Engelhardt, Introduction To Probability and Mathematical Statistics, 2nd ed. Kanada: Duxbury, 1991.
F. Cribari-Neto and S. G. Zarkos, œBootstrap methods for heteroskedastic regression models: Evidence on estimation and testing, Econom. Rev., vol. 18, no. 2, pp. 211“228, 1999, doi: 10.1080/07474939908800440.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).