PERILAKU SOLUSI PADA MODEL EPIDEMI SUSCEPTIBLE INFECTED RECOVERED (SIR) DENGAN WAKTU TUNDA
DOI:
https://doi.org/10.24114/jmk.v7i3.32458Keywords:
SIR Epidemic Model, Time Delay, Stability Criteria, Forward EulerAbstract
Model epidemi SIR adalah model penyebaran penyakit yang berbentuk sistem persamaan diferensial nonlinier. Adanya waktu tunda mempengaruhi kestabilan titik kesetimbangan model epidemi SIR. Waktu tunda menyatakan waktu inkubasi penyakit. Pada penelitian ini, tahapan yang dilakukan untuk mengetahui perilaku solusi model epidemi SIR dengan waktu tunda menggunakan beberapa asumsi, kemudian menentukan titik kesetimbangan, menganalisis kestabilan di sekitar titik kesetimbangan serta melakukan simulasi numerik menggunakan Matlab. Berdasarkan hasil analisis, model epidemi SIR dengan waktu tunda adalah stabil asimtotik di titik kesetimbangan bebas penyakit apabila syarat parameter terpenuhi dan stabil di titik kesetimbangan endemik apabila syarat parameter terpenuhi. Selanjutnya, dari simulasi menggunakan Matlab diperoleh grafik yang dapat mempermudah menjelaskan perilaku solusinya. Abstract” The SIR epidemic model is a disease spread model in the form of a system of nonlinear differential equations. The time delay affects the stability of the equilibrium point of the SIR epidemic model. The time delay represents the incubation time of the disease. In this study, the steps were carried out to determine the behavior of the SIR epidemic model solution with a time delay using several assumptions, then determining the equilibrium point, analyzing the stability around the equilibrium point and performing numerical simulations using Matlab. Based on the results of the analysis, the SIR epidemic model with a time delay is asymptotically stable at the disease-free equilibrium point if the parameter conditions have been met and stable at the endemic equilibrium point if the parameter conditions have been met. Furthermore, from the simulation using Matlab, a graph is obtained that can make it easier to explain the behavior of the solution.References
Ali, M.A., dan dkk, œNumerical Analysis of a Modified SIR Epidemic Model with the Effect of Time Delay, Journal of Mathematics, vol. 51, pp. 79-90, 2019.
Anton, H., dan Chris, R., Elementary Linear Algebra, 11th Edition, Wiley, United State of America, 1994.
Beretta, E., dan Takeuchi, Y., œGlobal Stability of an SIR epidemic model with time delays, Journal of Mathematical Biology, vol. 33, pp. 250-260, 1995.
Boyce, W.E., dan DiPrima, R. C., Elementary Differential Equations and Boundary Value Problems, Edisi ke-9, John Wiley and Sons Inc, United State of America, 2009.
Cain, J. W., dan Reynolds, A. M., Ordinary and Partial Differential Equation: An Introduction to Dynamical System, Virgina Commonwealth, University Mathematics, 2010.
Gonze, D., dan Kauffman, G., œTheory of Non-linear Dynamical Systems, Mathematics, pp. 34-36, 2015.
Haberman, R., Mathematical Models: Mechanical Vibrations, Populations Dynamics and Traffic Flow, Siam, Dallas, 1998.
Heri, S., dan R., D., Metode Numerik dengan Pendekatan Algoritma, Sinar Baru Algensindo, Bandung, 2005.
Kar, T. K., œSelective Harvesting in a Prey-Predator Fishery with Time Delay, IJSBAR, vol. 38, pp. 449-458, 2003.
M, L., dan Senthilkumar, Dynamics of Nonlinear Time-Delay Systems, Springer Verlag, Berlin Heildelberg, 2010.
N. Kausar, M. R., dan M., G., œA Numerical Study of SIR Epidemic Model, IJSBAR, vol. 25, no. 2, pp. 354-363, 2016.
Nonthakorn dan Guan, X., œMathematical Analysis of a Single-Species Population Model in a Polluted Environment with Discreate Time Delays, Worcester Polytechnic Institute, pp. 1-56, 2016
Rajab, W., Epidemiologi untuk Mahasiswa Kebidanan, Kedokteran EGC, Jakarta, 2008.
Wanbio Ma, M. S., dan Takeuchi, Y., œGlobal Stability if ab SIR Epidemic Model With Time Delay, Applied Mathematics Letters, vol. 17, pp. 1141-1145, 2004.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).