ANALISIS KESTABILAN PENYEBARAN PENYAKIT COVID-19 DENGAN PENGARUH KARANTINA
DOI:
https://doi.org/10.24114/jmk.v7i2.30929Keywords:
Quarantine, Covid-19, SEIR Model, stability, and Matlab.Abstract
Coronavirus Disease 2019 (Covid-19) adalah jenis penyakit baru yang belum pernah diidentifikasi sebelumnya pada manusia. Coronavirus merupakan keluarga besar virus yang menyebabkan penyakit mulai dari gejala ringan sampai gejala berat. Coronavirus merupakan penyakit yang dapat menular. Untuk mengatasi penyebaran penyakit menular, perlu dilakukan pencegahan. Karantina merupakan salah satu cara untuk mengatasi penyebaran penyakit. Tujuan dari penelitian ini adalah untuk menganalisis dan menjelaskan model simulasi penyebaran penyakit Covid-19 di bawah pengaruh karantina. Salah satu model matematis penularan penyakit adalah model SEIR. Dari model akan diperoleh nilai Reproduksi Dasar , titik kesetimbangan stabil asimtotik lokal untuk (kasus endemik penyakit) dan memiliki titik kesetimbangan stabil asimtotik untuk (kasus bebas penyakit). Abstract” Coronavirus Disease 2019 (Covid-19) is a new type of disease that has never been previously identified in humans. Coronaviruses are a large family of viruses that cause illness ranging from mild to severe. Coronavirus is a disease that can be transmitted. To prevent the spread of infectious diseases, prevention is necessary. Quarantine is one way to prevent the spread of disease. The purpose of this study is to analyze and explain a simulation model of the spread of the Covid-19 disease under the influence of quarantine. One of the mathematical models of disease transmission is the SEIR model. From the model, we get the Basic Reproductive value , a local asymptotically stable equilibrium point for (disease-endemic cases) and asymptotically stable equilibrium point for (disease-free cases).References
Kementrian kesehatan RI, œ Pedoman pencegahan pengendalian covid-19, Jakarta , KKRI, 2020.
Yanti, Etri dkk, œ Mencegah Penularan Virus Corona, Jurnal Abdimas Saintika, 2(01), 2020.
WHO,Transmisi SARS-CoV-2: implikasi terhadap kewaspadaan pencegahan infeksi, Pernyataan keilmuan, 2020.
Iswanti, R. J, œ Differential Equation and Dynamical System, Spring-verlag, New Work, 1991.
Maniqiq, Muhammad, œ Matematical model for mers-CoV diseases transmission with medical mask usage and vaccination, Indonesia Journal of Pure and Aplication Mathematics, 1(2):97-109, 2020.
Resmawan, Agusyarif Rezka Nuha dan Lailany Yahya, œAnalisis Dinamika Model Transmisi Covid-19 dengan melibatkan intervensi Karantina, Jambura Journal Of Mathematics, vol. 3, no. 1, pp. 66-79, 2020.
(2021) Data Sensus Penduduk. [Online]. Available: https://.bps.go.id/
Reandy, Novi Sasmata, M. I. S. d. V. C., œOptimal control on a mathematical model to pattern the progression of coronavirus disease 2019 (COVID-19) in Indonesia, Global Health Research and Policy, vol. 5, no. 38, 2020.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).