METODE NAIVE BAYES CLASSIFER DALAM PENENTUAN PENERIMA BEASISWA BIDIKMISI DI UNIVERSITAS NEGERI MEDAN
DOI:
https://doi.org/10.24114/jmk.v7i1.25698Keywords:
Data Collection, Data Cleaning, Data Transformation,Abstract
Abstrak”Beasiswa diberikan kepada mahasiswa dengan tujuan mengurangi jumlah mahasiswa yang putus kuliah, karena tidak mampu membiayai pendidikan. Namun untuk mendapatkan beasiswa mahasiswa harus memenuhi syarat yang telah ditetapkan. Oleh karena jumlah mahasiswa yang mengajukan permohonan harus memiliki kriteria penilaian yang ditentukan oleh universitas. Penerapan Metode Algoritma Naive Bayes Classifer pada evaluasi kinerja akademik mahasiswa dapat membantu memberikan rekomendasi penerima beasiswa. Naive Bayes adalah suatu metode klasifikasi dalam data mining dengan menggunakan metode probabilitas dan statistik. Data mining adalah proses yang menggunakan teknik statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat dan pengetahuan yang terkait dari berbagai database besar. Penelitian ini adalah Studi Kasus yang dilakukan di Jurusan Matematika Angkatan 2019 Universitas Negeri Medan. Data yang diambil adalah pekerjaan orang tua, penghasilan orang tua, jumlah tanggungan, daya listrik (watt), dan nilai ujian nasional. Adapun beberapa tahapan dari proses prosedur dari Klasifikasi Naive Bayes Classifer (NBC) yaitu : Pengumpulan Data, Data Cleaning, Data Transformation, dan Proses Perhitungan Naive Bayes Classifer. Dari hasil penelitian didapat Pengujian pada perbandingan data training dan data testing sebesar 80:20 menghasilkan akurasi tertinggi dengan 79% dan dilihat Metode Naive Bayes Classification digunakan untuk mengklasifikasikan Penerima beasiswa menghasilkan akurasi yang baik. Abstract”Scholarships are given to students with the aim of reducing the number of students who drop out of college, because they cannot afford to pay for their education. However, to get a scholarship, students must meet certain conditions. Therefore, the number of students who apply must have the assessment criteria determined by the university. The application of the Naive Bayes Classifer Algorithm in the academic evaluation of students can help provide recommendations for scholarship recipients. Naive Bayes is a classification method in data mining using probability and statistical methods. Data mining is one that uses statistical, mathematical, artificial intelligence, and machine learning techniques to extract and identify useful information and related knowledge from large databases. This research is a case study conducted at the Department of Mathematics Class of 2019 Medan State University. The data taken are parents' occupations, parents' income, number of dependents, electric power (wattage), and national exam scores. There are several stages of the procedure process of the Naive Bayes Classifer (NBC), namely: Data Collection, Data Cleaning, Data Transformation, and the Naive Bayes Classifer Calculation Process. From the results of the research obtained, the test on the comparison of training data and testing data is 80:20 with the highest accuracy quality with 79% and seen from the Naive Bayes Classification method used to classify good quality scholarship recipients.References
H Suyono, M Ridwan, d. M. S., Penerapan Data Mining Untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifer, Vol. 1 of 7, EECCIS, Yogyakarta. 2013.
Hendri, Penerapan Metode K-Nearest Neighbor pada aplikasi penentu penerima beasiswa mahasiswa di STMIK Sinar Nusantara Surakarta, STMIK Sinar Nusantara Surakarta, Yogyakarta. 2014.
Hermawati, F., Data Mining, Vol. 1, ANDI, Yogyakarta, 2013.
Junaidi (2017): Pemilihan Penerima Beasiswa Menggunakan Metode Profile Matching, Vol. 2 of 19, Paradigma, Yogyakarta, 2017.
Kemenristekdikti, Pedoman Umum Beasiswa dan Bantuan Biaya Pendidikan Bidikmisi, Direktorat Jenderal Pembelajaran dan Kemaha- siswaan, ANDI, Jakarta, 2015
Lahinta, Konsep Rancangan Sistem Pendukung Keputusan Penentuan Kandidat Penerima Beasiswa Studi Kasus pada TPSDM Propinsi Gorontalo, Vol. 1 of 7, Universitas Gadjah Mada, Yogyakarta, 2009.
Prasetyo, E., Data Mining: Konsep dan Aplikasi Menggunakan Matlab, ANDI, Yogyakarta, 2014.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).