PENERAPAN ALGORITMA APRIORI PADA STRATEGI PENJUALAN DI GIANT
DOI:
https://doi.org/10.24114/jmk.v7i1.24646Keywords:
Data Mining, aturan asosiasi, Algoritma Apriori.Abstract
Giant merupakan gerai yang menjual berbagai produk makanan, minuman dan barang kebutuhan lainnya tersedia untuk memenuhi kebutuhan konsumen sehari-hari. Maraknya keberadaan supermarket di Medan membuat pihak manajemen ingin melakukan kebijakan-kebijakan untuk meningkatkan penjualan. Salah satu kebijakannya dengan merancang discount untuk pembelian suatu kombinasi produk tertentu. Untuk melakukan hal tersebut harus diketahui kombinasi produk apa yang diminati oleh pelanggan, salah satu caranya dengan teknik asosiasi menggunakan Algoritma Apriori untuk menghasilkan aturan-aturan asosiasi. Aturan asosiasi ini akan memberikan informasi mengenai kombinasi produk yang diminati oleh pelanggan, sehingga pihak manajemen dapat melakukan kebijakan-kebijakan untuk menarik para pelanggan berbelanja di supermarketnya. Kata kunci: Data Mining, aturan asosiasi, Algoritma Apriori. Abstract Giant is an outlet that sells a variety of food, beverage and other necessities available to meet the daily needs of consumers. The rise of supermarkets in Medan has made the management want to implement policies to increase sales. One of the policies is to design a discount for the purchase of a certain product combination. To do this, it must be known what product combination the customer is interested in, one of the ways is the association technique using the Apriori Algorithm to generate association rules. The association's rules will provide information on product combinations that are of interest to customers, so that management can carry out policies to attract customers to shop at their supermarkets.References
Listriani, D, (2016): Penerapan Metode
Asosiasi Mengguakan Algoritma
Apriori, 9(2).
Dewi, K., (2013): Implementasi Data
mining pada Penjualan Produk
Elektronik dengan Algoritma Apriori
(studi Kasus : Kreditplus), 3(4).
Prasetyo, E., (2012): Data Mining,
ANDI, Yogyakarta.
Emha, T. L., (2009): Penerapan Data
Mining Algoritma Asosiasi untuk
Meningkatkan Penjualan), 10(1).
Astuti Hermawati, F., (2013): Data
Mining Menggunakan Matlab, ANDI,
Yogyakarta.
Turban, B., ( 2005): Decision Suport
System and Inteligent System, ANDI,
Yogyakarta.
Agrawal, Rakesh and Srikant,
Ramakrishnan. (1994). Fast Algorithms
for Mining Association Rules.
Research Report. IBM Almaden
Research Center, San Jose, California,
June 1994
Randolf (2008): Penerapan Metode
Kaidah Asosiasi dengan Menggunakan
Algoritma Apriori Pada Data
Transaksi Minimarket.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).