PELABELAN TOTAL SISI AJAIB PADA GRAF CYCLE
DOI:
https://doi.org/10.24114/jmk.v5i2.24597Abstract
Pelabelan total sisi ajaib pada sebuah graf adalah pemetaan satu-satu dari ) ke bilangan asli dimana | dan sedemikian sehingga untuk setiap sisi berlaku untuk setiap konstanta ajaib . Tujuan penelitian ini untuk mengetahui apakah pelabelan total sisi ajaib berlaku pada graf cycle, mengetahui bagaimana rentang nilai konstanta ajaib yang terbentuk dalam pelabelan total sisi ajaib pada graf cycle, dan mengetahui cara memberikan label sisi dan titik pada graf cycle untuk nilai konstanta ajaib . Metode penelitian yang digunakan adalah metode kepustakaan. Penelitian yang dilakukan didalam Perpustakaan untuk mengumpulkan data dan informasi.Pengumpulan data dan informasi tersebut tersebut dilakukan dengan bantuan bermacam material yang terdapat diruang perpustakaan seperti buku-buku dan dokumen yang ada. Dari hasil penelitian ini diperoleh pelabelan total sisi ajaib pada graf cycle , melalui perhitungan dasar dengan mempertimbangkan struktur graf cycle diperoleh rentang nilai konstanta ajaib yaitu untuk ganjil adalah dan untuk genap adalah .Kata kunci: Pelabelan total sisi ajaib, Graf cycle.Abstract Edges magic labeling on graph is one-to-one mapping of into the natural constant , where , where v = | G | and such that for each edge apply for each magic constant . Purpose this study to find out if the total labeling edge of miraculous effect on cycle graph, knowing how a magic numbers of value range formed in the magic edge of the total labeling on cycle graph, and know how to provide the label edge and a vertex on the graph cycle to magic constants . Research methods used are the ordinary method. Research conducted in the library to collect data and information. The information and data collection is done with the help of various kinds of materials contained in the room such as library books and documents. From the results of this research obtained the magic edge of the total labeling on cycle graph , through basic calculations taking into account the structure of the cycle graph obtained magic constant range is for odd is and for n even is . Keyword: Total Magic Edge Labellings, Cycle Graph.References
Nada, B., (2008): Menentukan Pelabelan Total Sisi Ajaib Dan Konstanta Ajaib Terkecil Pada Graf Sikel, Lintasan Dan Star, Pusat Perpustakaan UIN Malang, 35“48.
Prihatmaja, P. A., (2017): Penerapan Teori Graf Dalam Jaringan GSM, Teknik Elektro dan Informatika, 1“6.
Rosen, K., (2012): Discrete Mathematics and Its Applications, Seventh Edition, McGrawHill, New York.
Hariyadi, P. T., (2017): Pelabelan Total Sisi Ajaib Pada Graf Roda, Universitas Sanata Dharma, Yogyakarta.
Omer Berkman, d., (2016): All Cycles Are Edge-Magic, Academic College Of Tel Aviv-Yafo, Israel.
W.D Wallis, d., (2000): Edge Magic Total Labelling, Australasian Journal of Combinatorics, 22(22), 177“189.
S, J., (2007): Pelabelan Graf Siklus Sederhana Untuk Mengkonstruksi Vertex Magic Graph, Pusat Perpustakaan UPI, 9“30.
Simangunsong, J. W., (2015): Pelabelan Total titik Ajaib pada Graf Petersen yang Diperumum, 85“89.
Sugeng, K. A., (2005): Magic and Antimagic Labelling of Graphs, University Ballarat, Australia.
Lipschutz, S., (2002): Solved Problems in Discrete Mathematics, Jilid II, McGrawHill, Singapore
Downloads
Published
Issue
Section
License
Copyright (c) 2021 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).