INDEKS PELANGI-3 KUAT GRAF HASIL OPERASI KALI SISIR TITIK GRAF TANGGA DENGAN GRAF BINTANG (L_n ⊳_(∘ ) K_(1,r))
DOI:
https://doi.org/10.24114/jmk.v6i3.22181Keywords:
comb product, ladder graph, star graph, strong 3-rainbow indexAbstract
ABSTRAKMisalkan dan suatu graf terhubung tak trivial yang berhingga. Misalkan pula suatu pohon pada dan subhimpunan-. Didefnisikan suatu pewarnaan- pada sisi-sisi dengan dua buah sisi yang bertetangga dapat memiliki warna yang sama. Pohon dikatakan pohon pelangi jika tidak ada dua sisi pada pohon yang diwarnai sama. Selanjutnya, pohon- pelangi adalah pohon pelangi yang menghubungkan titik-titik di . Suatu pewarnaan- yang setiap subhimpunan--nya terdapat pohon- pelangi disebut pewarnaan- pelangi- . Indeks pelangi- dari , dinotasikan dengan, adalah bilangan bulat terkecil sehingga memiliki pewarnaan- pelangi-. Sementara itu, jarak Steiner dari subhimpunan- adalah ukuran minimum pohon di yang menghubungkan titik-titik di . Pohon dikatakan pohon“ Steiner pelangi atau lebih sederhana pohon Steiner pelangi jika tidak ada dua sisi pada pohon yang diwarnai sama dengan ukuran pohon tersebut sama dengan jarak Stenernya. Suatu pewarnaan- yang setiap subhimpunan- -nya terdapat pohon Steiner pelangi disebut pewarnaan- pelangi- kuat. Indeks pelangi- kuat dari , dinotasikan dengan , adalah bilangan bulat terkecil sehingga memiliki pewarnaan- pelangi- kuat. Pada tulisan ini penulis mengkaji mengenai indeks pelangi-3 kuat dari graf hasil operasi kali sisir titik graf tangga dengan graf bintang.Kata kunci: graf tangga, hasil kali sisir, indeks pelangi-3 kuat ABSTRACKLet and be a finite nontrivial connected graph. Let T be a tree on G and is a k subset. Define an edge coloring“h on G with adjency edges can have the same color. A tree T is said to be a rainbow tree if there are no two edges on T have the same color. Furtherrmore, rainbow-S tree is a rainbow tree that connects the vertices of S. A h-coloring c that every k-subset has rainbow S-tree is called k-rainbow h-coloring. The k-rainbow index of G, denoted by , is the minimum h such that G has a k-rainbow h-coloring. Meanwhile, the Steiner distance of k-subset is the minimum size of a tree in G that connects S. A tree T is said rainbow Steiner S-tree or simply a rainbow Steiner tree if no two edges in T have the same color. A h-coloring c that every k-subset has rainbow Steiner tree is called strong k-rainbow h-coloring. The strong k-rainbow index of G, denoted by , is the minimum h such that G has strong k-rainbow h-coloring. In this paper, the author examined the strong 3-rainbow index of comb product of ladder graphs with star graphs.Keywords: comb product, ladder graph, star graph, strong 3-rainbow index.References
DAFTAR PUSTAKA
Chartrand, G., Johns, G.L., McKeon, K.A., dan Zhang, P. (2008): The rainbow connection in graphs, Math Bohem, 54(2), 75-81
Chartrand, G., Okamoto F., dan Zhang, P. (2010): Rainbow trees in graphs and generalized connectivity, Networks, 55, 360-367
Chen, L., Li, X., Yang, K., dan Zhao, Y. (2015): The 3-rainbow index of a graph, Discussiones Mathematicae. Graph Theory, 35, 81-94
Diestel, R. (2006): Graph Theory, Springer
Indrajit, R.E. (2011): Fenomena kebocoran data: mencari sumber penyebab dan akar masalah. Tersedia di http://www.idsirtii.or.id/. Tanggal akses: Agustus 2020
Kartika, D. (2017): Indeks pelangi-3 kuat untuk beberapa operasi graf, Tesis Program Magister, Institut Teknologi Bandung
Kartika, D., Salman, A.N.M., (2019): The 3-rainbow index of some graphs that constructed by joining a graph with a trivial graph, Journal of Physics: Conference Series, doi: 10.1088/1742-6596/1127/1/012060
Li, X., Shi, Y., dan Sun, Y. (2013): Rainbow connections of graphs: a survey, Graphs and Combinatorics, 29, 1-38.
Published
Issue
Section
License
Copyright (c) 2020 KARISMATIKA: Kumpulan Artikel Ilmiah, Informatika, Statistik, Matematika dan Aplikasi

This work is licensed under a Creative Commons Attribution 4.0 International License.
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).