MENENTUKAN SUKU KE-N BARISAN BERTINGKAT
DOI:
https://doi.org/10.24114/jmk.v1i2.17066Abstract
ABSTRAK Barisan bertingkat adalah salah satu jenis barisan yang dapat dipandang sebagai sistem persamaan linier. Untuk menentukan suku ke-n barisan bertingkat adalah dengan cara menyelidiki sampai tingkat ke berapa ditemukan selisih tetapnya dan kemudian mengubahnya ke dalam bentuk fungsi yang sesuai dengan tingkat perolehan selisih tetap tersebut. Kemudian ditentukan nilai-nilai dari suku pertama minimal hingga suku ke empat, dan selanjutnya menghubungkan komponen-komponen yang bersesuaian pada masing-masing tingkat penyelidikan sistem persamaan linier atau variabel persamaan linier yang banyaknya sesuai dengan banyaknya variabel.Kata kunci: Barisan, barisan aritmetika, selisih tetap, suku ke-n ABSTRACT An arithmatic sequence with a common difference is a type of sequences that can be generated as a system of linear equation. To determine the nth term of the sequence is carried out by investigating when the common difference is obtained and then generating it into the form of an appropriate polynomial function. Furthermore the first, the second, the third, and at least until the fourth term of the sequence are determined in the form of the generating polynomial equation.Keywords: sequence, arithmatic sequence, a common difference, n-th termDownloads
Published
2015-08-08
Issue
Section
Articles
License
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).