APLIKASI METODE SMOOTHING EKSPONENSIAL DALAM PERAMALAN PERSEDIAAN ENERGI LISTRIK (STUDI KASUS : PERSEDIAAN ENERGI LISTRIK OLEH PT.PLN (PERSERO) AREA MEDAN
DOI:
https://doi.org/10.24114/jmk.v4i1.11856Abstract
ABSTRAKListrik sebagai salah satu sumber daya yang sangat penting dalam kehidupan manusia menjadi salah satu hal yang sangat diperhatikan. Hampir semua alat-alat kebutuhan manusia menggunakan tenaga listrik. Tujuan dari penelitian ini untuk mengetahui persediaan energi listrik yang terpakai dan melakukan peramalan untuk persediaan energi listrik yang akan terpakai di wilayah PT.PLN(Persero) Area Medan. Salah satu analisis deret waktu yang dipakai untuk menentukan peramalan adalah metode smoothing eksponensial ganda (metode linear satu parameter dari Brown). Data yang digunakan adalah data primer yang di ambil dari kantor cabang PT.PLN(Persero) Area Medan dengan kurun waktu Januari 2014 “ Juli 2017.Langkah-langkah penelitian yang akan dilakukan adalah: Mengumpulkan data; Memplot data; Menentukan nilai smoothing eksponensial; Melakukan pemeriksaan ramalan; Menghasilkan ramalan yang akan datang; dan Membuat kesimpulan.Hasil penelitian peramalan menunjukkan bahwa peramalan persediaan energi listrik yang terpakai di wilayah PT.PLN (Persero) Area Medan untuk tahun 2018 adalah 5,84 % untuk golongan sosial, 5,08% untuk golongan rumah tangga, 5,38 % untuk golongan bisnis, 12,27% untuk golongan industri, 1,37 % untuk golongan pemerintahan.Kata Kunci: Metode Smoothing, Smoothing Eksponensial Ganda (Metode Linear Satu Parameter dari Brown, Listrik, Golongan Sosial, Golongan Rumah Tangga, Golongan Bisnis, Golongan Industri, Golongan Pemerintahan. ABSTRACTElectricity as one of the most important resources in human life becomes one of the things that is very concerned. Almost all the tools of human need use electric power. The purpose of this research is to know the inventory of used electric energy and to forecast for the supply of electric energy that will be used in PT.PLN (Persero) Area Medan. One of the time series analyzes used to determine forecasting is the double exponential smoothing method (the linear one-parameter method of Brown). The data used is the primary data taken from the branch office PT.PLN (Persero) Medan Area with the period January 2014 - July 2017.The steps of research that will be conducted are: Collecting data; Plotting data; Specifies the exponential smoothing value; Conducting forecasting; Produce the forecast to come; and Make a conclusion.The result of forecasting research shows that the forecasting of electricity supply that used in PT.PLN (Persero) Medan area for year 2018 is 5,84% for social group, 5.08% for household class, 5.38% for business class, 12.27% for the industry, 1.37% for the governmental group.Keywords: Smoothing Method, Multiple Exponential Smoothing (One Parameter Linear Method from Brown, Electricity, Social Group, Household Group, Business Group, Industrial Group, Governmental Groups.Downloads
Published
2018-04-03
Issue
Section
Articles
License
This work is licensed under a Creative Commons Attribution 4.0 International License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under Creative Commons Attribution 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Penulis.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (Refer to The Effect of Open Access).