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 Land cover changes are a critical concern in a developing 
country, where rapid urbanization and population growth 
intersect with environmental dynamics. Understanding the 
driving forces behind these changes is essential for sustainable 
development and effective land management. This study 
analyzes land cover changes in Demak-Jepara regency, 
Indonesia, over a 20 year period using Landsat data. The 
objective is to identify the dominant factors driving the increase 
in built-up areas, considering both natural and human-induced 
factors. Factors such as road distance, existing build area, and 
natural features are evaluated. Using ArcGIS and Idrisi Selva's 
Land Change Modeler, land cover data is processed, and 
Cellular Automata-Markov analysis is conducted. The analysis 
considers a cell size of 30 x 30 meters and a time step of 5 years 
from 2001 to 2009. Transition persistence analysis identifies 
significant factors, validated using 2020 land cover data 
through AUC (Area Under the Curve) and ROC (Relative 
Operating Characteristic) analysis. The combination of natural 
and human-induced factors (scenario-C) shows the highest 
AUC value of 0.9406, indicating better conformity with 2020 
land cover. Dominant factors in scenario-C include roads, 
existing built-up area, river order, and slope gradient. Results 
reveal that road development and proximity to existing 
settlements are the primary drivers of land cover changes. 
Natural factors like river order and slope gradient have a lesser 
impact, while the coastline has minimal influence. These 
findings highlight the importance of considering both natural 
and human-induced factors in land use planning. They provide 
valuable insights for policymakers and land managers in 
making informed decisions for sustainable development and 
land use strategies. 
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INTRODUCTION 
Land cover change is necessary for 

development (Hanafi et al., 2021). Land 
cover changes are always associated with 
population growth and land or space needs. 
Land cover variations are influenced by 
many factors, such as technological level, 
prosperity, spatial planning, and space 
availability (Akomolafe & Rosalina, 2022). 
However, the pattern and scales are 
dominantly driven by economic variables. 

Space or land is vital so that changes are 
dynamic and unavoidable. 

Along with population growth and 
planning needs, Indonesia is also 
experiencing continuous land cover change. 
Indonesia's population growth in the last 20 
years (2000-2020) has been very rapid, along 
with increased built-up land. In 20 years, 
Indonesia's population grew by more than 
30.7 % and reached 269,603,400 people. The 
island of Java, one of Indonesia's most 
densely populated islands, is also 
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experiencing the same thing, even faster. 
Java Island contributes 58.9 % of the 
Indonesian population, with the same 
growth rate (29.3 %). It is noted that the 
average deforestation in Indonesia is about 
0.86 million Ha per year, so Java Island left 
only 16 % of the area of forest in 2020  of the 
whole island (Kehutanan, 2021).  

More detailed, especially in the 
northern coastal areas of Java Island, have 
experienced an increase in built-up area. 
Several regencies are located on the north 
coast of Java Island and have experienced an 
increase in built-up land in the last ten years, 
such as Semarang City: 13% (Pamungkas et 
al., 2019), Pekalongan City: 24% (Suharini, E; 
Hanafi, F; Akhsin, 2017), Batang and Kendal 
Regencies: 14.08 %, including Jepara and 
Demak regencies (Figure 1.). Central Bureau 
of Statistics data showed that Jepara 
Regency has an average population growth 
per year from 2010 – 2017 of 1.79 percent. 
Along with the population increase, the level 
of population density also increases. In 2017, 
the population density of Jepara Regency 
was 1,218 people/km2. The total population 
of Demak Regency is 1,117,901 people. This 
number comprises 553,876 males (49.55%) 
and 564,025 females (50.45%). This number 
has increased from 2014 to 5,681 people, or 
around 1.04%. 

This research was conducted on 
Demak and Jepara regencies, which are 
directly adjacent to the north coast of Java, so 
most of their areas are affected by the 
coastline. The coastal area is generally 
known as the meeting area between land 
and sea, which is influenced by changes in 
the phenomena of land and sea (Islam et al., 
2021). The potential of resources in coastal 
areas is excellent for the development and 
welfare of the community (Mardiatno, 2018). 
Coastal areas are also inseparable from 
problems caused by human activities, such 
as land use that is not following its function 
or due to natural factors such as natural 
disasters. Coastal regions are one of the most 
vulnerable areas to the effects of global 
warming, accompanied by an increase in 
mean sea level and changing shoreline 
configurations (Arjasakusuma et al., 2021). 
Development must always be balanced with 

planning, which plays a role in harmonizing 
development needs with the need to protect, 
preserve, and improve the quality of the 
landscape.  

Remote sensing imageries are very 
diverse in type and characteristics. 
Commonly used examples include Landsat, 
Spot, Alos, and NOAA. Land cover change 
studies require continuous and broad 
temporal data. Remote sensing data has 
appropriate spectral, spatial, and temporal 
resolution and is suitable for land change 
studies. One type of remote sensing imagery 
that is suitable for land cover change studies 
is Landsat. Landsat is an image with the 
advantages of accurate calibration and a 
stable and consistent sensor (NASA, 2021). 
Landsat has been launched for nine 
generations. This research takes base date 
(2000-2020) 20-year study, it requires at least 
two Landsat generations, namely Landsat 7 
(1999) and Landsat 8 (2013), with a spatial 
resolution of 15 m panchromatic sensor and 
a temporal resolution of 16 days. 

Land cover change studies develop 
with the availability of varied data, 
representational techniques, and more 
flexible modeling. The contribution of 
geographic information systems (GIS) in 
spatial planning also follows technological 
advances. The interoperability of GIS to 
input a wide (various) data provides 
opportunities for dynamic modeling based 
on the past and the future more realistic. 
With GIS resources, it is easier to evaluate 
the results of past plans, including 
modifying plans that consider the results of 
several plans for urban planning and natural 
resources management (Ansari & Golabi, 
2019). The accelerated use of GIS techniques 
and remote sensing data has made the 
geospatial processes faster, easier, and more 
complex (Rwanga & Ndambuki, 2017).  

In regions like Indonesia, rapid 
population growth and urban expansion 
have driven significant land cover changes, 
particularly in the northern coastal areas of 
Java. Cities like Semarang and Pekalongan 
have seen substantial increases in built-up 
areas, reflecting broader trends of 
urbanization and deforestation (Hanafi & 
Pamungkas, 2021). GIS and remote sensing 
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in these studies help understand and plan 
sustainable development (Gu & Zeng, 2024). 

Markov Chain and Cellular automata 
(CA) are GIS products everyday for land 
cover change studies (Abdisa et al., 2023). 
CA is a matrix-based numerical model that 
is specific in space and time. The minimal 
structure of CA is cell size, initial cell 
condition, neighborhood template, and its 
transition function to time (Munthali et al., 
2020). The integration of CA and geographic 
information systems (GIS) has the potential 
to simulate real-world urban development 
(Yeh et al., 2021) by considering various 
factors, including socioeconomic, policy, 
and geography/physical constraints (Liang 
et al., 2018).  CA and statistical analyses can 
identify practical constraints or driving 
factors influencing land cover changes 
(Hamdy & Zhao, Shichen; A. et al.; Eid, 
2017).  Driving factors often used for CA-
based land cover analysis include distance or 
type of road, spatial planning or policy, 
public service buildings or activity centers, 
and natural factors. Natural factors are given 
factors, such as stream or drainage pattern, 
slope, elevation, and shoreline. 

The distinct features of Demak and 
Jepara Regency serve as both a coastal 
agglomeration and the hinterland for 
Semarang City (the capital of Central Java 
province), consequently forming particular 
constraints and driving factors for land 
cover change. An advanced study 
pioneering in identifying and analyzing 
these factors, encompassing anthropogenic 
and natural influences, using the Cellular 
Automata-Markov Land Cover prediction 
model as a basis for understanding and 

planning sustainable development is 
urgently required. Therefore, the research 
objectives are to (1) describe the Landcover 
transition of Demak and Jepara Regency 
over the last 20 years and (2) identify the 
constraints and driving factors that 
significantly influence the increase of built-
up areas in Demak and Jepara Regency. 
 
RESEARCH METHODS 
Study Area 

The study utilized land cover data at 
ten-year intervals (2000, 2010, and 2020) to 
analyze changes in the coastal areas of 
Demak and Jepara Regency. The research 
covered an area of approximately 1,959.37 
km² across 30 districts. Demak Regency, 
situated in low-lying terrain, ranges from 0 
to 100 meters above mean sea level (MSL). In 
contrast, Jepara Regency's topography is 
diverse—flat to undulating and steep—
owing to the Muria Mountains in the east. 

 
Landsat Data Collection For Landcover 
Extraction 

Land cover data was selected with a 
time gap of approximately ten years (2001, 
2009, 2020) to discover the contrast 
differences (Table 1.). The shorter time gap 
of Land cover change data will lead to 
misinterpretation and lack of contrast due to 
the slight change. The initial land cover 
change data is from 2001 to 2009, as 
simulation input to 2020. The 2020 data 
controls or tests the data accuracy results 
from the 2009 land cover data simulation. 
The primary data used are shown in Table 1. 
The primary data used are shown in Table  1.

 
Table 1 Data Satellite Used 

Satellite Data Acquired  Path Row 
Landsat 5 2001-07-01 120 065 
Landsat 5 2001-07-01 120 064 
Landsat 7 2009-09-25 120 065 
Landsat 7 2009-09-25 120 064 
Landsat 8 2020-08-30 120 065 
Landsat 8 2020-08-30 120 064 

 Source: USGS Data, 2023. 
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Landsat Data Preprocessing 
All the geometric imagery was 

internally corrected with RMS 3,567-7,388, 
while the radiometric correction used the 
Top of Atmosphere method. Top of 
Atmosphere (ToA) is a satellite image 
correction to eliminate radiometric 
distortion because of the sun's position. In 
the ToA images, the changes in the sensor, 
variations in the sun-earth distance, solar 
geometry, and exo atmospheric solar 
radiation from the spectral band difference 
were minimized. Then, atmospheric 
correction on surface reflectance was 
performed to reduce atmospheric effects 
(Zhai et al., 2022). Atmospheric corrections 
were performed using the Quick 
Atmospheric Correction (QUAC) method 
(Niraj et al., 2022). (QUAC) is a visible 
infrared to near-infrared or visible to near-
infrared (VNIR) atmospheric correction 
through short wave infrared (SWIR) for 
multispectral and hyperspectral images 
(Maviza & Ahmed, 2020). QUAC correction 
produces an image of the captured surface 
reflectance, which is then scaled to a two-
byte signed integer using a reflectance scale 
factor of 10,000 (Kang et al., 2020). 
 
Supervised Land Cover Classification 

Multispectral classification is a 
technique of grouping spectral reflections 
against several bands. Uniformity of values 
between homogeneous, similar, or identical 
bands. Different objects identify differences 
in reflection values on the same band. 
Multispectral classification helps Earth 
monitor the planet’s land surfaces (Clark, 
2020). The multispectral classification 
consists of supervised and unsupervised. 
Supervised classification involves the 
classification of pixels with unknown 
identities through a classification algorithm 
using the spectral characteristics of pixels 
from a known information class (training 
area) (Zhang et al., 2023) identified by the 
analyst. The advantages of supervised 
classification are that the category, class, and 
criteria information is well controlled from 
start to finish; besides, the selection of 
training areas can bind the identity or class 
to an area whose type is known, so 

misclassifications are more accessible to 
detect. 

Although there are some limitations to 
supervised classification, First is the 
character of supervised, i.e., imposing a 
classification structure upon the data 
regardless of spectral is the most relevant in 
the object (Kang et al., 2020). Second, 
because spectral is a secondary input, it often 
overlaps and is ambiguous. Third, sorting 
out categories based on analyst preferences 
takes local knowledge and time. Based on 
those advantages and disadvantages, land 
cover series data were obtained using 
Landsat 5, 7, and 8 data with supervised 
multispectral classification. The standard 
supervised classifications are the maximum 
likelihood (Abdullah et al., 2019) rather than 
others because the advantages are intuitive 
decision rule, a well-developed foundation 
such as normally distributed data, and the 
ability to accommodate various types of 
imagery. This research uses ArcGIS Image 
Classification with a supervised maximum 
Likelihood tool to process land cover data by 
considering it user-friendly and giving 
similar results to other software. 

 
Accuracy Assessment 

Previously, accuracy assessment was 
not a priority in image classification studies. 
However, accuracy assessment has become 
vital because of the accelerated chances for 
error digital imagery presents (Rwanga & 
Ndambuki, 2017). Land cover is the primary 
data in this research, so its quality is a 
priority. Therefore, quality control of land 
cover data becomes a primary concern. The 
accuracy test of the multispectral maximum 
likelihood classification was carried out 
using the confusion matrix method, with 
high-resolution 
(https://earth.google.com/) image data as a 
reference, through visual interpretation with 
a total of more than 500 samples with 
different locations in each data year. The 
sample is distributed as an equal grid on all 
research boundaries (administrative 
boundary of Demak-Jepara Regency). A 
Matrix Confusion was used to calculate the 
error with primary measures of each 
classification and overall, such as user’s, 
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producer's, and overall accuracy (Foody, 
2020).  

 
Figure 1. Research Location (Source: Research Results, 2023)
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Figure 2. Research Transition Rule Potential (Source: Research Analysis, 2023) 

 
Cellular Automata  

Based on land cover raster data series, 
simulation and validation can proceed to 
cellular automata (CA) analysis. CA-Markov 
model is theory-based modeling based on 
random prediction (Janizadeh et al., 2021). 
The initial state (cell) is influenced by 
neighbors (matrix) surrounding. Matrix size 
can be 3x3, 4x4, or more (Abdisa et al., 2023). 
The changes movement can be influenced or 
limited with constraint factor, and the 
degree of changes ruled by time step. 

This research uses ArcGIS software to 
process data land cover and Idrisi Selva 
(https://clarklabs.org/) to analyze the CA-
Markov using Land Change Modeler 
(LCM)(Eastman, 2015). The condition is 
described as follows: the cell size is 30 x 30 
m, the same as the output from the Landsat 
image; the state is 2001 landcover type with 
2009 as the target; and the time step is set to 
five years.  

 
Transition Rules  

To generate a simulation that is close 
to reality, a transition (changes) rule is 
needed. The change rule is essential in 
developing a close and direct link between 
urban modeling and theories (Yeh et al., 
2021). Transition rules in the Land Change 
Modeler refer to the rules that determine the 
possible transitions between land use/land 
cover classes in a particular area over time. 
The transition rules in Land Change 
Modeler are typically defined based on a 

combination of empirical data, expert 
knowledge, and theoretical considerations. 

Some common factors that may be 
considered in developing transition rules 
include historical patterns of land use 
change, ecological processes, feedback, 
socioeconomic drivers of land use change, 
policy interventions, and potential climate 
change impacts. The transition rule in this 
research uses deterministic categories based 
on more deterministic models that specify 
the exact conditions under which particular 
transitions are likely to occur (Feng & Tong, 
2018). Land cover that is possible to change 
is defined with a value of 1, while it is not 
possible to change with a value of 0. An 
example of a transition rule is shown in 
Figure 2. A controlling factor drives the 
outcomes through a transition rule to 
determine the optimal combination for 
improving the overall performance of urban 
Cellular Automata (CA) models. This results 
in the movement of available cells becoming 
more aligned with the actual development of 
urbanized cells (Xia & Zhang, 2021). 
 
Driving and Limiting Factors 

The changes on LCM changes in LCM 
can be influenced by driving or limiting 
(constraint) factors. Constraint or driven 
factors in the Land Change Modeler refer to 
the factors or conditions that limit or 
facilitate the occurrence of land use/land 
cover change in a particular area (Meneses et 
al., 2017). These factors can significantly 
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impact land use change's direction, 
magnitude, and timing. They may be driven 
by various environmental, social, economic, 
and political factors. Driving factor control 
consistently gives empirical evaluation and 
limits the wild probability of each scenario 
(Kim et al., 2020). Examples of constraint or 
driven factors in the Land Change Modeler 
may include physical factors such as 
topography, soil characteristics, and climate, 
as well as human factors such as population 
growth, urbanization, land tenure systems, 
and land use policies. 

These factors can act as barriers to land 
use change or as drivers of land use change. 
The contribution of constraint or driven 
factors into the Land Change Modeler can 
help improve the model simulations' 
accuracy and realism. This research uses 
constraint geographical factors such as 
coastline, stream order, and slope, 
meanwhile, the driving factors are existing 
built-up area and road network class. Those 
factors are simplified, as shown in Table 2, 
even though the process for validation and 
simulation will use different factors 
depending on the AUC analysis later.

Table 2 Driven/constraint factor treatment 
Factor Input Data Description and Treatment 

Coast Line (1) Polyline 
 

§ Euclidian Distance for impact analysis based on proximity 
to the coastline 

§ Fuzzy Membership to generalize values from 0 - 1 
Stream Order (2) Polyline § 3 Stream Order, Hack order 

§ Euclidian Distance and weight sum order 1 = 1, order 2 = 
0,66, dan order 3 = 0,33 

§ Fuzzy Membership to generalize values from 0 - 1 
Slope (3) Raster  § SRTM Data 

§ Percent Slope analysis and classify (I:0-8), (II:8-15),(III:15-
25), (IV:25-45), (V:>45) 

§ Scoring using Euclidian allocation (2, 4, 6, 8, 10) 
Road Network 
(4) 

Polyline § Classify of arterial, collector, local roads, and other roads 
§ Euclidian distance with Weight Sum with arterial: 1; 

collector: 0,8; local: 0,6; and other 0,4 
§ Fuzzy Membership to generalize values from 0 - 1 

Existing Built 
area (5) 

Polygon § Euclidian Distance for impact analysis based on proximity 
to the existing 

§ Fuzzy Membership to generalize values from 0 - 1 
Source: Research Analysis, 2023.

 
The land cover change model from 

2001 to 2009 is used as input to identify the 
influencing or constraint factors, with 2020 
as the final simulation result. The final 
results of the 2020 simulation were tested 
with the existing 2020 land cover data using 
AUC and ROC analysis in the Idrisi Selva 
LCM Model. 

AUC and ROC analysis are commonly 
used methods for evaluating the accuracy of 
classification models in remote sensing. 
Idrisi Selva offers a tool for performing these 
analyses on classification maps created 
using various algorithms. The ROC Analysis 
tool generates a plot of TPR (True Positive 

Rate) versus FPR (False et al.) for different 
classification thresholds. It calculates an 
AUC value to measure the classification 
model's accuracy overall.  

If a predictor variable is categorical, 
the corresponding ROC curve will have one 
less than the number of categories as 
possible thresholds. However, if the 
predictor is binary, there will be only one 
threshold. Since the AUC value can inform 
decision-making when choosing the best 
model, it is essential to consider how it aligns 
with the insights gained from the ROC 
curve. ROC has proven helpful in assessing 
the quality of transition probability maps in 
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CA models (Tong & Feng, 2020). Therefore, 
it is essential to examine both the ROC curve 
and AUC value when evaluating the 
accuracy of a classification model 
(Muschelli, 2020). By using this tool, remote 

sensing analysts can assess the performance 
of their classification models and identify the 
best classification threshold for their specific 
needs. The research framework is shown in 
Figure 3. 

 

 
Figure 3. Research Framework (Source: Research Analysis, 2023)

 
RESULTS AND DISCUSSION 
Time Series Land Cover From Landsat data 

The land cover datasets for 2001, 2009, 
and 2020 were generated using supervised 
classification methods on remote sensing 
imagery, and their quality was assessed for 
further analysis. The results of the confusion 
(Table 3) matrix table, which was evaluated 
based on producer accuracy, demonstrate 
that the average accuracy of each land cover 
map is above 85%. This finding is consistent 
with the commonly used accuracy threshold 
of 85% for land cover analysis. Therefore, the 
land cover datasets are considered adequate 
quality for subsequent analysis. 

The processed data reveals a gradual 
change in land cover in Demak and Jepara 

Districts from 2001 to 2020. Over 20 years, 
agricultural land has shown a consistent 
increase, although it has experienced 
fluctuations due to inconsistent data 
recording and shifting agricultural practices 
throughout the year. Conversely, there has 
been a significant rise in built-up areas, 
almost doubling in size, accompanied by a 
decline in forested regions. This trend aligns 
with the increased demand for space 
resulting from population growth during 
the same period, primarily for residential 
and commercial purposes. The changes in 
land cover, including open fields and water 
bodies, can be further examined in Table 4 
and Figure 4. 

 
Table 3 Confusion Matrices 

Land Cover 
Producer Accuracy 

2001 2009 2020 
Water Body 80% 86% 78% 

Build Up Area 99% 93% 97% 
Agriculture 100% 100% 99% 

Forest 77% 79% 94% 
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Open Field 88% 84% 61% 
Average  92 % 95 % 88% 

Source: Research Results, 2023. 
 

Table 4. Land cover Changes on Demak-Jepara Regency 

Landcover Years 
2001 2009 2020 

Agriculture 617,95 (32 %) 791,09 (40 %) 761,96 (39 %) 
Built Area 270,21 (14 %) 519,52 (27 %) 662,99 (34 %) 

Forest 633,95 (32 %) 267,63 (14 %) 195,78 (10 %) 
Open Field 256,34 (13 %) 240,05 (7 %) 210,56 (11 %) 
Water Body 180,55 (9 %) 140,71 (7 %) 127,71 (7 %) 

Average 1.959,00 (100 %) 1.959,00 (100 %) 1.959,00 (100 %) 
Source: Research Results, 2023 
 

 
Figure 4. Existing Landcover of Demak-Jepara Regency (2001-2020) 

Source: Research Results, 2023.  
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Driving and Limiting Factors for Built-Up 
Area 

The analysis of transition persistence 
testing for each influencing variable was 
performed across multiple scenarios to 
investigate their effects (Li et al., 2020). The 
first scenario exclusively considered natural 
factors, namely (1) coastline, (2) river order, 
and (3) slope gradient. The second scenario 
focused solely on human-induced 
factors(Gupta & Sharma, 2020), including (4) 
roads and (5) existing built-up land. The 
third scenario encompassed a combination 
of both natural and human-induced factors.  

Based on transition persistence 
analysis, we selected factors that were 
identified as significantly contributing to 

ensuring meaningful simulations for the 
year 2020. The influence of each variable was 
quantified on a scale from highest 
(approaching 0, indicating maximum 
influence) to lowest (approaching 1, 
indicating minimal influence). Notably, 
waterbody was excluded as a rule change, as 
depicted in Figure 2. Scoring and weighting 
are crucial in determining simulation 
outcomes, including selecting interval 
classes or continuous data. For instance, 
continuous data types can utilize distance 
analysis based on raster data, such as 
Euclidean distance and fuzzy membership 
functions (Mehra & Swain, 2024). The 
outcomes of implementing the transition 
rule across the three scenarios are delineated 
in Table 5.

Table 5 (Transition-Persistence) Forcing a Single Independent Variable Land Cover Changes 
to be Constant on Demak-Jepara Regency 

Scenario Land Cover Changes Skill Measure 
1 2 3 4 5 

A 
Agriculture To Built Area 0,0049 0,0026 0,0349 - - 
Forest To Built Area 0,3202 0,3152 0,2427 - - 
Open Field To Built Area 0,5220 0,0021 0,4715 - - 

B 
Agriculture To Built Area - - - 0,1073 0,0531 
Forest To Built Area - - - 0,0391 0,0002 
Open Field To Built Area - - - 0,0094 0,5810 

C 
Agriculture To Built Area Failed 0,0428 0,1430 0,1352 0,1352 
Forest To Built Area Failed 0,2889 0,3905 0,3911 0,2820 
Open Field To Built Area Failed 0,5948 0,5942 0,0055 0,4590 

 Average Best Scenario  0,3088 0,3759 0,1773 0,2921 
 Influential Factor Rank  3 4 1 2 

Source: Research Results, 2023.
 

Table 5 analyses land cover changes 
and their implications for coastal 
development. It focuses on the Root Mean 
Square of transitional potential iterations 
resulting under a sub-model structure 
involving testing and training (Raj & 
Sharma, 2022). (RMS) values in the context 
of a scenario, i.e.: 

Scenario A. The first scenario is 
related to natural factors. The study 
investigates the challenges of evaluating 
these values, which display considerable 
variation. The findings reveal that all factors 
demonstrate favorable values during the 

transition from agricultural to built-up land. 
However, in the case of the transition from 
open fields to built-up areas, the coastline 
does not exhibit desirable RMS values. 

Consequently, the coastline is 
excluded from the combination factor 
analysis due to its failure to meet the criteria 
in two out of three changes. The coastal 
region of Demak Jepara Regency is 
characterized by a predominantly flat and 
open field cover. However, considering 
potential tidal influences, extensive 
development as built-up land is only 
recommended if it is repurposed for 
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activities such as fishponds. As a result, the 
coastline needs to be considered in the 
combined scenario analysis. 

Scenario B. In the second scenario, 
which focuses on human-induced factors, 
land cover transitions influenced by road 
class consistently demonstrate values 
approaching 0. The presence of built-up 
areas has a substantial impact on these 
transitions. However, there are instances of 
low values observed during the transition 
from open field to built-up areas, resembling 
the findings observed along the coastline in 
the natural factor scenario. However, since it 
only fails to meet the criteria in 1 out of 3 
transitions, it will still be included in the 
combined scenario analysis. 

Scenario C. The results of the 
combined scenario demonstrate consistent 
RMS values for each rule and factor (natural 
and human-induced). However, two natural 
factors, namely river order, and slope, 
exhibit relatively low values (above 0,5), 
particularly during the transition from open 
field to build area. The simulation process 
provides valuable insights. Firstly, it 
indicates that the coastline has limited 
influence on the transition to a built-up area. 
This observation is prominent in coastal 
areas with flat terrain, where inconsistencies 
arise between land flatness and road 
accessibility. 

The transition from open field to build 
area also shows suboptimal RMS values in 
multiple tests (Raj & Sharma, 2022). This 
pattern is evident in the combined scenario, 
where this transition yields low values for 
almost all factors except the road factor. The 
research findings highlight that the coastline 
factor has the most negligible impact (Rizzo 
& Anfuso, 2020), while the road factor exerts 
the most significant influence. This outcome 
is reasonable, considering that 
transportation access often plays a pivotal 
role in determining whether an area will 
undergo development or remain 
undeveloped. 

Scenario D., The land cover results 
from the scenarios involving natural factors, 
human-induced factors, and their 
combination, were derived from land cover 
data from 2001 to 2009. These scenarios were 

subsequently evaluated for their conformity 
with the existing land cover data of 2020. 
Conformity was assessed using the ROC 
(Relative et al.) analysis, where a higher Area 
Under the Curve (AUC) value indicates a 
greater alignment with the existing 
conditions, thus signifying a more suitable 
scenario. 

Scenario E. The AUC analysis for 
scenario A yielded a value of 0.7918, scenario 
B yielded 0.8156, and scenario C yielded 
0.9406. These findings suggest that scenario 
C is the most optimal, approaching a value 
of 1. This particular scenario incorporates 
the following factors: (2) river order, (3) 
slope gradient, (4) roads, and (5) existing 
built-up land. By considering the average 
values of scenario C, as depicted in Table 5, 
it can be concluded that the development of 
Kab. Demak Jepara is primarily influenced 
by the expansion of road networks and built-
up areas, while factors such as river order 
and slope gradient have a comparatively 
lesser impact. Locally, coastal 
morphodynamics has less influence due to 
the homogeneity of contour, tidal, or 
sedimentation (Rizzo & Anfuso, 2020).  

Each tested scenario demonstrates 
that several factors influence land cover 
changes. First, the transition rule determines 
the degree of logical change for a given land 
cover type. Second, the variation and 
classification of driving and inhibiting 
factors influence the smoothness and 
accuracy of cell movement. Modeling these 
two aspects can enhance the accuracy of 
representing real-world changes, improving 
the precision of land cover change 
predictions. 

Although this study has utilized 
several factors, namely (1) coastline, (2) river 
order, and (3) slope gradient, the second 
scenario focused exclusively on 
anthropogenic factors, including (4) roads 
and (5) existing built-up land. There remains 
substantial potential to incorporate 
additional factors such as disaster-prone 
areas, accessibility to public facilities, 
business location (Feng & Tong, 2020), 
hospitals, population distribution, industrial 
zones, and other relevant boundaries. 
Furthermore, the selection of scoring values 
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and the weighting of each variable can be 
further refined to improve the quality of the 
scenarios. 

 
CONCLUSION 

Based on the analysis of transition 
persistence and ROC, it can be inferred that 
the 20-year development of Kabupaten 
Demak-Jepara is primarily driven by 
human-induced factors, particularly the 
expansion of different road classes and the 
proximity to existing settlements. Natural 
factors, such as river order and slope 
gradient, have a relatively minor influence 
on the changes in land cover. Interestingly, 
the coastline, which was anticipated to 
impact the coastal area significantly, 
demonstrates minimal influence. Among the 
five factors examined, the development and 
classification of roads emerge as the 
dominant factors shaping the land cover 
changes in the region. 
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